-
Notifications
You must be signed in to change notification settings - Fork 10.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Baichuan2 Error] : CUDA error 9 at xxx/llama.cpp/ggml-cuda.cu:6862: invalid configuration argument #3740
Comments
Exact same error for causallm
|
I'm getting an error from the same line of code, but mine says "no kernel image is available for execution on the device", instead of "invalid configuration argument". |
same error system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | == Running in interactive mode. ==
Transcript of a dialog, where the User interacts with an Assistant named Bob. Bob is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision. User: Hello, Bob. |
A call stack and the kernel launch parameters that cause this error would help get this fixed quicker. |
Here it is.
|
The problem here seems to be that |
@slaren this also worked with CausalLM on GPU! (earlier have same issue) |
I test baichuan2, it works well On GPU, thanks a lot! @slaren |
We still need to fix though, this is just a workaround. |
Not sure if I made something wrong, but after recompiling with the |
Pipeline
I try to convert baichuan2 model to gguf format and load it.
step 1. Use the Script https://github.com/baichuan-inc/Baichuan2/blob/main/README_EN.md#migrating-inference-optimizations-from-baichuan-1-to-baichuan-2 convert Baichuan2 to Baichuan1
step 2. I try to use convert.py and convert-baichuan-hf-to-gguf.py to convert baichuan1 to gguf
step 3. Use build/bin/quantize to quantize gguf model to q4_0
step 4. Use build/bin/main to run prompt.
I try both 7b-chat and 13b-chat model, convert.py and convert-baichuan-hf-to-gguf.py.
CPU works well, but GPU error, i am sure i use the latest llama.cpp version.
Log and Error Message
build/bin/main -m ../model/gguf/baichuan2-7b-chat.Q4_0.gguf --prompt "赏析:白日依山尽,黄河入海流" -ngl 1
Log start
main: build = 1414 (96981f3)
main: built with cc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0 for x86_64-linux-gnu
main: seed = 1698054643
ggml_init_cublas: found 1 CUDA devices:
Device 0: Tesla T4, compute capability 7.5
llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from ../model/gguf/baichuan2-7b-chat.Q4_0.gguf (version unknown)
llama_model_loader: - tensor 0: token_embd.weight q4_0 [ 4096, 125696, 1, 1 ]
llama_model_loader: - tensor 1: blk.0.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 2: blk.0.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 3: blk.0.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 4: blk.0.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 5: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 6: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 7: blk.1.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 8: blk.1.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 9: blk.1.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 10: blk.1.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 11: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 12: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 13: blk.2.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 14: blk.2.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 15: blk.2.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 16: blk.2.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 17: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 18: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 19: blk.3.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 20: blk.3.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 21: blk.3.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 22: blk.3.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 23: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 24: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 25: blk.4.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 26: blk.4.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 27: blk.4.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 28: blk.4.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 29: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 30: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 31: blk.5.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 32: blk.5.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 33: blk.5.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 34: blk.5.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 35: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 36: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 37: blk.6.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 38: blk.6.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 39: blk.6.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 40: blk.6.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 41: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 42: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 43: blk.7.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 44: blk.7.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 45: blk.7.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 46: blk.7.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 47: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 48: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 49: blk.8.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 50: blk.8.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 51: blk.8.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 52: blk.8.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 53: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 54: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 55: blk.9.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 56: blk.9.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 57: blk.9.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 58: blk.9.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 59: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 60: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 61: blk.10.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 62: blk.10.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 63: blk.10.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 64: blk.10.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 65: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 66: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 67: blk.11.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 68: blk.11.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 69: blk.11.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 70: blk.11.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 71: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 72: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 73: blk.12.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 74: blk.12.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 75: blk.12.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 76: blk.12.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 77: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 78: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 79: blk.13.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 80: blk.13.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 81: blk.13.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 82: blk.13.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 83: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 84: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 85: blk.14.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 86: blk.14.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 87: blk.14.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 88: blk.14.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 89: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 90: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 91: blk.15.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 92: blk.15.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 93: blk.15.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 94: blk.15.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 95: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 96: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 97: blk.16.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 98: blk.16.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 99: blk.16.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 100: blk.16.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 101: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 102: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 103: blk.17.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 104: blk.17.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 105: blk.17.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 106: blk.17.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 107: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 108: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 109: blk.18.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 110: blk.18.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 111: blk.18.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 112: blk.18.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 113: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 114: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 115: blk.19.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 116: blk.19.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 117: blk.19.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 118: blk.19.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 119: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 120: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 121: blk.20.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 122: blk.20.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 123: blk.20.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 124: blk.20.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 125: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 126: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 127: blk.21.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 128: blk.21.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 129: blk.21.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 130: blk.21.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 131: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 132: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 133: blk.22.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 134: blk.22.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 135: blk.22.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 136: blk.22.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 137: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 138: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 139: blk.23.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 140: blk.23.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 141: blk.23.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 142: blk.23.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 143: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 144: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 145: blk.24.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 146: blk.24.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 147: blk.24.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 148: blk.24.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 149: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 150: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 151: blk.25.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 152: blk.25.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 153: blk.25.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 154: blk.25.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 155: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 156: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 157: blk.26.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 158: blk.26.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 159: blk.26.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 160: blk.26.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 161: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 162: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 163: blk.27.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 164: blk.27.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 165: blk.27.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 166: blk.27.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 167: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 168: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 169: blk.28.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 170: blk.28.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 171: blk.28.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 172: blk.28.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 173: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 174: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 175: blk.29.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 176: blk.29.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 177: blk.29.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 178: blk.29.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 179: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 180: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 181: blk.30.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 182: blk.30.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 183: blk.30.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 184: blk.30.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 185: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 186: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 187: blk.31.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 188: blk.31.ffn_gate.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 189: blk.31.ffn_down.weight q4_0 [ 11008, 4096, 1, 1 ]
llama_model_loader: - tensor 190: blk.31.ffn_up.weight q4_0 [ 4096, 11008, 1, 1 ]
llama_model_loader: - tensor 191: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 192: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 193: output_norm.weight f32 [ 4096, 1, 1, 1 ]
llama_model_loader: - tensor 194: output.weight q6_K [ 4096, 125696, 1, 1 ]
llama_model_loader: - tensor 195: blk.0.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 196: blk.0.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 197: blk.0.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 198: blk.1.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 199: blk.1.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 200: blk.1.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 201: blk.2.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 202: blk.2.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 203: blk.2.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 204: blk.3.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 205: blk.3.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 206: blk.3.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 207: blk.4.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 208: blk.4.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 209: blk.4.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 210: blk.5.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 211: blk.5.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 212: blk.5.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 213: blk.6.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 214: blk.6.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 215: blk.6.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 216: blk.7.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 217: blk.7.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 218: blk.7.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 219: blk.8.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 220: blk.8.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 221: blk.8.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 222: blk.9.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 223: blk.9.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 224: blk.9.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 225: blk.10.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 226: blk.10.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 227: blk.10.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 228: blk.11.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 229: blk.11.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 230: blk.11.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 231: blk.12.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 232: blk.12.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 233: blk.12.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 234: blk.13.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 235: blk.13.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 236: blk.13.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 237: blk.14.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 238: blk.14.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 239: blk.14.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 240: blk.15.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 241: blk.15.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 242: blk.15.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 243: blk.16.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 244: blk.16.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 245: blk.16.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 246: blk.17.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 247: blk.17.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 248: blk.17.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 249: blk.18.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 250: blk.18.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 251: blk.18.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 252: blk.19.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 253: blk.19.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 254: blk.19.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 255: blk.20.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 256: blk.20.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 257: blk.20.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 258: blk.21.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 259: blk.21.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 260: blk.21.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 261: blk.22.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 262: blk.22.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 263: blk.22.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 264: blk.23.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 265: blk.23.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 266: blk.23.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 267: blk.24.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 268: blk.24.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 269: blk.24.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 270: blk.25.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 271: blk.25.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 272: blk.25.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 273: blk.26.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 274: blk.26.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 275: blk.26.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 276: blk.27.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 277: blk.27.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 278: blk.27.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 279: blk.28.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 280: blk.28.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 281: blk.28.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 282: blk.29.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 283: blk.29.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 284: blk.29.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 285: blk.30.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 286: blk.30.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 287: blk.30.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 288: blk.31.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 289: blk.31.attn_k.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - tensor 290: blk.31.attn_v.weight q4_0 [ 4096, 4096, 1, 1 ]
llama_model_loader: - kv 0: general.architecture str
llama_model_loader: - kv 1: general.name str
llama_model_loader: - kv 2: baichuan.tensor_data_layout str
llama_model_loader: - kv 3: baichuan.context_length u32
llama_model_loader: - kv 4: baichuan.embedding_length u32
llama_model_loader: - kv 5: baichuan.block_count u32
llama_model_loader: - kv 6: baichuan.feed_forward_length u32
llama_model_loader: - kv 7: baichuan.rope.dimension_count u32
llama_model_loader: - kv 8: baichuan.attention.head_count u32
llama_model_loader: - kv 9: baichuan.attention.head_count_kv u32
llama_model_loader: - kv 10: baichuan.attention.layer_norm_rms_epsilon f32
llama_model_loader: - kv 11: tokenizer.ggml.model str
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr
llama_model_loader: - kv 13: tokenizer.ggml.scores arr
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32
llama_model_loader: - kv 17: tokenizer.ggml.padding_token_id u32
llama_model_loader: - kv 18: general.quantization_version u32
llama_model_loader: - kv 19: general.file_type u32
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_0: 225 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_vocab: mismatch in special tokens definition ( 1298/125696 vs 259/125696 ).
llm_load_print_meta: format = unknown
llm_load_print_meta: arch = baichuan
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 125696
llm_load_print_meta: n_merges = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = mostly Q4_0
llm_load_print_meta: model params = 7.51 B
llm_load_print_meta: model size = 4.06 GiB (4.64 BPW)
llm_load_print_meta: general.name = Baichuan2-7B-Chat
llm_load_print_meta: BOS token = 1 '
''llm_load_print_meta: EOS token = 2 '
llm_load_print_meta: UNK token = 0 ''
llm_load_print_meta: PAD token = 0 ''
llm_load_print_meta: LF token = 1099 '<0x0A>'
llm_load_tensors: ggml ctx size = 0.10 MB
llm_load_tensors: using CUDA for GPU acceleration
llm_load_tensors: mem required = 4045.48 MB
llm_load_tensors: offloading 1 repeating layers to GPU
llm_load_tensors: offloaded 1/35 layers to GPU
llm_load_tensors: VRAM used: 108.59 MB
......................................................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: kv self size = 256.00 MB
llama_new_context_with_model: compute buffer total size = 259.63 MB
llama_new_context_with_model: VRAM scratch buffer: 253.50 MB
llama_new_context_with_model: total VRAM used: 362.09 MB (model: 108.59 MB, context: 253.50 MB)
system_info: n_threads = 8 / 16 | AVX = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 0 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 |
sampling:
repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000
top_k = 40, tfs_z = 1.000, top_p = 0.950, typical_p = 1.000, temp = 0.800
mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
generate: n_ctx = 512, n_batch = 512, n_predict = -1, n_keep = 0
赏析:白日依山尽,黄河入海流。
CUDA error 9 at /home/ubuntu/workspace/baichuan2-gguf-sagemaker/llama.cpp/ggml-cuda.cu:6862: invalid configuration argument
current device: 0
The text was updated successfully, but these errors were encountered: