-
Notifications
You must be signed in to change notification settings - Fork 10.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adreno gpu run crash #4973
Comments
Can you provide a stack trace? |
Thread 6 "main" received signal SIGSEGV, Segmentation fault. |
|
Yes, I suspect it's related to OpenCL |
I believe that what is happening is that the bias weights are being offloaded to OpenCL, but then the OpenCL backend is not able to use these weights because it does not implement the |
When can this be fixed then? |
This issue is stale because it has been open for 30 days with no activity. |
This issue was closed because it has been inactive for 14 days since being marked as stale. |
hello, every one
I follow this page to compile llama.cpp on termux: #2169
when I run a qwen1.8B model on a Snapdragon 8 Gen 3 device and specified the ngl, program went crash.
full log is:
~/.../llama.cpp/build-gpu $ GGML_OPENCL_PLATFORM=0 GGML_OPENCL_DEVICE=0 ./bin/main -m ../../../1.8b-ggml-model-q4_0.gguf -p 'I am a boy' -ngl 1
Log start
main: build = 1882 (a0b3ac8)
main: built with clang version 17.0.6 for aarch64-unknown-linux-android24
main: seed = 1705405161
ggml_opencl: selecting platform: 'QUALCOMM Snapdragon(TM)'
ggml_opencl: selecting device: 'QUALCOMM Adreno(TM) 750'
ggml_opencl: device FP16 support: true
llama_model_loader: loaded meta data with 19 key-value pairs and 195 tensors from ../../../1.8b-ggml-model-q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen
llama_model_loader: - kv 1: general.name str = Qwen
llama_model_loader: - kv 2: qwen.context_length u32 = 8192
llama_model_loader: - kv 3: qwen.block_count u32 = 24
llama_model_loader: - kv 4: qwen.embedding_length u32 = 2048
llama_model_loader: - kv 5: qwen.feed_forward_length u32 = 11008
llama_model_loader: - kv 6: qwen.rope.freq_base f32 = 10000.000000
llama_model_loader: - kv 7: qwen.rope.dimension_count u32 = 128
llama_model_loader: - kv 8: qwen.attention.head_count u32 = 16
llama_model_loader: - kv 9: qwen.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 11: tokenizer.ggml.tokens arr[str,151936] = ["!", """, "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 12: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 13: tokenizer.ggml.merges arr[str,151387] = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv 14: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 15: tokenizer.ggml.eos_token_id u32 = 151643
llama_model_loader: - kv 16: tokenizer.ggml.unknown_token_id u32 = 151643
llama_model_loader: - kv 17: general.quantization_version u32 = 2
llama_model_loader: - kv 18: general.file_type u32 = 2
llama_model_loader: - type f32: 73 tensors
llama_model_loader: - type q4_0: 121 tensors
llama_model_loader: - type q6_K: 1 tensors
llm_load_vocab: special tokens definition check successful ( 293/151936 ).
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 151936
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: n_ctx_train = 8192
llm_load_print_meta: n_embd = 2048
llm_load_print_meta: n_head = 16
llm_load_print_meta: n_head_kv = 16
llm_load_print_meta: n_layer = 24
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 2048
llm_load_print_meta: n_embd_v_gqa = 2048
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx = 8192
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q4_0
llm_load_print_meta: model params = 1.84 B
llm_load_print_meta: model size = 1.04 GiB (4.85 BPW)
llm_load_print_meta: general.name = Qwen
llm_load_print_meta: BOS token = 151643 '[PAD151643]'
llm_load_print_meta: EOS token = 151643 '[PAD151643]'
llm_load_print_meta: UNK token = 151643 '[PAD151643]'
llm_load_print_meta: LF token = 148848 'ÄĬ'
llm_load_tensors: ggml ctx size = 0.15 MiB
llm_load_tensors: offloading 1 repeating layers to GPU
llm_load_tensors: offloaded 1/25 layers to GPU
llm_load_tensors: CPU buffer size = 1062.67 MiB
llm_load_tensors: OpenCL buffer size = 27.18 MiB
...............................................................
llama_new_context_with_model: n_ctx = 512
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CPU KV buffer size = 96.00 MiB
llama_new_context_with_model: KV self size = 96.00 MiB, K (f16): 48.00 MiB, V (f16): 48.00 MiB
llama_new_context_with_model: graph splits (measure): 1
llama_new_context_with_model: CPU compute buffer size = 300.75 MiB
Segmentation fault
compile
The text was updated successfully, but these errors were encountered: