-
Notifications
You must be signed in to change notification settings - Fork 46
/
decoder.py
187 lines (137 loc) · 5.59 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import math
import numpy as np
from utils import *
from scipy import fftpack
from PIL import Image
class JPEGFileReader:
TABLE_SIZE_BITS = 16
BLOCKS_COUNT_BITS = 32
DC_CODE_LENGTH_BITS = 4
CATEGORY_BITS = 4
AC_CODE_LENGTH_BITS = 8
RUN_LENGTH_BITS = 4
SIZE_BITS = 4
def __init__(self, filepath):
self.__file = open(filepath, 'r')
def read_int(self, size):
if size == 0:
return 0
# the most significant bit indicates the sign of the number
bin_num = self.__read_str(size)
if bin_num[0] == '1':
return self.__int2(bin_num)
else:
return self.__int2(binstr_flip(bin_num)) * -1
def read_dc_table(self):
table = dict()
table_size = self.__read_uint(self.TABLE_SIZE_BITS)
for _ in range(table_size):
category = self.__read_uint(self.CATEGORY_BITS)
code_length = self.__read_uint(self.DC_CODE_LENGTH_BITS)
code = self.__read_str(code_length)
table[code] = category
return table
def read_ac_table(self):
table = dict()
table_size = self.__read_uint(self.TABLE_SIZE_BITS)
for _ in range(table_size):
run_length = self.__read_uint(self.RUN_LENGTH_BITS)
size = self.__read_uint(self.SIZE_BITS)
code_length = self.__read_uint(self.AC_CODE_LENGTH_BITS)
code = self.__read_str(code_length)
table[code] = (run_length, size)
return table
def read_blocks_count(self):
return self.__read_uint(self.BLOCKS_COUNT_BITS)
def read_huffman_code(self, table):
prefix = ''
# TODO: break the loop if __read_char is not returing new char
while prefix not in table:
prefix += self.__read_char()
return table[prefix]
def __read_uint(self, size):
if size <= 0:
raise ValueError("size of unsigned int should be greater than 0")
return self.__int2(self.__read_str(size))
def __read_str(self, length):
return self.__file.read(length)
def __read_char(self):
return self.__read_str(1)
def __int2(self, bin_num):
return int(bin_num, 2)
def read_image_file(filepath):
reader = JPEGFileReader(filepath)
tables = dict()
for table_name in ['dc_y', 'ac_y', 'dc_c', 'ac_c']:
if 'dc' in table_name:
tables[table_name] = reader.read_dc_table()
else:
tables[table_name] = reader.read_ac_table()
blocks_count = reader.read_blocks_count()
dc = np.empty((blocks_count, 3), dtype=np.int32)
ac = np.empty((blocks_count, 63, 3), dtype=np.int32)
for block_index in range(blocks_count):
for component in range(3):
dc_table = tables['dc_y'] if component == 0 else tables['dc_c']
ac_table = tables['ac_y'] if component == 0 else tables['ac_c']
category = reader.read_huffman_code(dc_table)
dc[block_index, component] = reader.read_int(category)
cells_count = 0
# TODO: try to make reading AC coefficients better
while cells_count < 63:
run_length, size = reader.read_huffman_code(ac_table)
if (run_length, size) == (0, 0):
while cells_count < 63:
ac[block_index, cells_count, component] = 0
cells_count += 1
else:
for i in range(run_length):
ac[block_index, cells_count, component] = 0
cells_count += 1
if size == 0:
ac[block_index, cells_count, component] = 0
else:
value = reader.read_int(size)
ac[block_index, cells_count, component] = value
cells_count += 1
return dc, ac, tables, blocks_count
def zigzag_to_block(zigzag):
# assuming that the width and the height of the block are equal
rows = cols = int(math.sqrt(len(zigzag)))
if rows * cols != len(zigzag):
raise ValueError("length of zigzag should be a perfect square")
block = np.empty((rows, cols), np.int32)
for i, point in enumerate(zigzag_points(rows, cols)):
block[point] = zigzag[i]
return block
def dequantize(block, component):
q = load_quantization_table(component)
return block * q
def idct_2d(image):
return fftpack.idct(fftpack.idct(image.T, norm='ortho').T, norm='ortho')
def main():
parser = argparse.ArgumentParser()
parser.add_argument("input", help="path to the input image")
args = parser.parse_args()
dc, ac, tables, blocks_count = read_image_file(args.input)
# assuming that the block is a 8x8 square
block_side = 8
# assuming that the image height and width are equal
image_side = int(math.sqrt(blocks_count)) * block_side
blocks_per_line = image_side // block_side
npmat = np.empty((image_side, image_side, 3), dtype=np.uint8)
for block_index in range(blocks_count):
i = block_index // blocks_per_line * block_side
j = block_index % blocks_per_line * block_side
for c in range(3):
zigzag = [dc[block_index, c]] + list(ac[block_index, :, c])
quant_matrix = zigzag_to_block(zigzag)
dct_matrix = dequantize(quant_matrix, 'lum' if c == 0 else 'chrom')
block = idct_2d(dct_matrix)
npmat[i:i+8, j:j+8, c] = block + 128
image = Image.fromarray(npmat, 'YCbCr')
image = image.convert('RGB')
image.show()
if __name__ == "__main__":
main()