-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathsetup.py
91 lines (80 loc) · 2.64 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""Installation setup."""
import io
import re
from setuptools import setup, find_packages, Extension
import numpy
# Get the numpy include directory.
numpy_include_dir = numpy.get_include()
def find_version(pkg_name):
"""Finding package version."""
with open(f"{pkg_name}/__init__.py", encoding="utf-8") as init_file:
init_text = init_file.read()
_version = (re.search('^__version__\\s*=\\s*"(.*)"',
init_text, re.M)
.group(1))
return _version
version = find_version("forestatrisk")
# reStructuredText README file
with io.open("README.rst", encoding="utf-8") as f:
long_description = f.read()
# Project URLs
project_urls = {
"Documentation": "https://ecology.ghislainv.fr/forestatrisk",
"Source": "https://github.com/ghislainv/forestatrisk/",
"Traker": "https://github.com/ghislainv/pywdpa/forestatrisk",
}
# Informations to compile internal hbm module (hierarchical bayesian model)
hbm_module = Extension("forestatrisk.hbm",
sources=["C/binomial_iCAR.c", "C/useful.c"])
# Setup
setup(
name="forestatrisk",
version=version,
author="Ghislain Vieilledent",
author_email="ghislain.vieilledent@cirad.fr",
url="https://github.com/ghislainv/forestatrisk",
license="GPLv3",
description="Modelling and forecasting deforestation in the tropics",
long_description=long_description,
long_description_content_type="text/x-rst",
classifiers=[
"Development Status :: 4 - Beta",
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
"Programming Language :: Python :: 3",
"Operating System :: OS Independent",
"Topic :: Scientific/Engineering :: Bio-Informatics",
],
keywords="deforestation hbm hierarchical logistic model probability "
"risk Bayesian spatial autocorrelation",
python_requires=">=3.6",
ext_modules=[hbm_module],
packages=find_packages(),
package_dir={"forestatrisk": "forestatrisk"},
package_data={
"forestatrisk": [
"csv/*.csv",
"shell/data_country.sh",
"shell/forest_country.sh",
]
},
include_package_data=True,
entry_points={"console_scripts": [
"forestatrisk = forestatrisk.forestatrisk:main"]},
install_requires=[
"gdal",
"numpy",
"matplotlib",
"pandas",
"patsy",
"pywdpa",
"scikit-learn",
"geefcc",
],
extras_require={
"interactive": ["jupyter", "python-dotenv", "geopandas",
"descartes", "folium"]
},
include_dirs=[numpy_include_dir],
zip_safe=False,
)
# End