-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathattack.py
654 lines (573 loc) · 28.5 KB
/
attack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
"""
This code does three things one after the other:
1) Quickly evaluate the model accuracy performance on a specified dataset (train/validation/test).
2) Attack the specified dataset subset with a specified attack (only on the first call to this script with the attack).
3) For each sample in the 'set' subset (val/test), calculate and save the Influence Functions scores I_up_loss
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import matplotlib
# Force matplotlib to not use any Xwindows backend.
# import platform
# if platform.system() == 'Linux':
matplotlib.use('Agg')
import logging
import numpy as np
import tensorflow as tf
import os
import imageio
from tqdm import tqdm
import darkon
from cleverhans.attacks import FastGradientMethod, DeepFool, SaliencyMapMethod, CarliniWagnerL2, MadryEtAl, ElasticNetMethod
from tensorflow.python.platform import flags
from cleverhans.loss import CrossEntropy, WeightDecay, WeightedSum
from NNIF_adv_defense.models.darkon_resnet34_model import DarkonReplica
from cleverhans.utils import AccuracyReport, set_log_level
from NNIF_adv_defense.tools.utils import one_hot
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
from NNIF_adv_defense.datasets.influence_feeder import MyFeederValTest
import pickle
from cleverhans.utils import random_targets
from cleverhans.evaluation import batch_eval
import time
FLAGS = flags.FLAGS
flags.DEFINE_integer('batch_size', 125, 'Size of evaluating batches')
flags.DEFINE_string('dataset', 'cifar10', 'datasset: cifar10/100 or svhn')
flags.DEFINE_string('set', 'val', 'val or test set to evaluate')
flags.DEFINE_string('attack', 'deepfool', 'adversarial attack: deepfool, jsma, cw, cw_nnif')
flags.DEFINE_string('checkpoint_dir', '', 'Checkpoint dir, the path to the saved model architecture and weights')
# TODO: remove
flags.DEFINE_string('mode', 'null', 'to bypass pycharm bug')
flags.DEFINE_string('port', 'null', 'to bypass pycharm bug')
if FLAGS.set == 'val':
test_val_set = True # evaluating on the validation set
WORKSPACE = 'influence_workspace_validation'
USE_TRAIN_MINI = False # use all the training set examples in evaluation
else:
test_val_set = False # evaluating on the
WORKSPACE = 'influence_workspace_test_mini'
USE_TRAIN_MINI = True
TARGETED = FLAGS.attack != 'deepfool' # we use targeted attacks everywhere except deepfool
_classes = {
'cifar10': (
'airplane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
),
'cifar100': (
'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle',
'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel',
'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock',
'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur',
'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster',
'house', 'kangaroo', 'keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion',
'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse',
'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear',
'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine',
'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose',
'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake',
'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table',
'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout',
'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm'
),
'svhn': (
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'
)
}
# this is the name of the scope of the author(s) Resnet34 graph. If the user wants to just load our network parameters
# and maybe later even use our scores.npy outputs (it takes a long time to compute yourself...), he/she must use
# these strings. Otherwise, any string is OK. We provide here as default the scope names we used.
ARCH_NAME = {'cifar10': 'model1', 'cifar100': 'model_cifar_100', 'svhn': 'model_svhn'}
weight_decay = 0.0004
LABEL_SMOOTHING = {'cifar10': 0.1, 'cifar100': 0.01, 'svhn': 0.1}
# Object used to keep track of (and return) key accuracies
report = AccuracyReport()
# Set TF random seed to improve reproducibility
superseed = 123456789
rand_gen = np.random.RandomState(superseed)
tf.set_random_seed(superseed)
# Set logging level to see debug information
set_log_level(logging.DEBUG)
# Create TF session
config_args = dict(allow_soft_placement=True)
sess = tf.Session(config=tf.ConfigProto(**config_args))
# get records from training
if FLAGS.checkpoint_dir != '':
model_dir = FLAGS.checkpoint_dir # set user specified dir
else:
model_dir = os.path.join(FLAGS.dataset, 'trained_model') # set default dir
workspace_dir = os.path.join(model_dir, WORKSPACE)
attack_dir = os.path.join(model_dir, FLAGS.attack)
if TARGETED:
attack_dir = attack_dir + '_targeted'
# make sure the attack dir is constructed
if not os.path.exists(attack_dir):
os.makedirs(attack_dir)
val_indices = np.load(os.path.join(model_dir, 'val_indices.npy'))
mini_train_inds = None
if USE_TRAIN_MINI:
train_mini_indices_path = os.path.join(model_dir, 'train_mini_indices.npy')
if not os.path.exists(train_mini_indices_path):
print('Creating train mini indices for the test set...')
# first, we need to create a temporary feeder to fetch all the training samples indices (not validation)
tmp_feeder = MyFeederValTest(dataset=FLAGS.dataset, rand_gen=rand_gen, as_one_hot=True, val_inds=val_indices,
test_val_set=True, mini_train_inds=None)
train_inds = tmp_feeder.train_inds
random_inds = rand_gen.choice(train_inds, 5000, replace=False) # collecting features for 5000 random training
# samples (instead of 49k) due to time complexity
random_inds.sort()
np.save(train_mini_indices_path, random_inds)
del tmp_feeder
else:
print('loading train mini indices from {}'.format(train_mini_indices_path))
mini_train_inds = np.load(train_mini_indices_path)
feeder = MyFeederValTest(dataset=FLAGS.dataset, rand_gen=rand_gen, as_one_hot=True, val_inds=val_indices,
test_val_set=test_val_set, mini_train_inds=mini_train_inds)
# get the data
X_train, y_train = feeder.train_indices(range(feeder.get_train_size()))
X_val, y_val = feeder.val_indices(range(feeder.get_val_size()))
X_test, y_test = feeder.test_data, feeder.test_label # getting the real test set
y_train_sparse = y_train.argmax(axis=-1).astype(np.int32)
y_val_sparse = y_val.argmax(axis=-1).astype(np.int32)
y_test_sparse = y_test.argmax(axis=-1).astype(np.int32)
if TARGETED:
# get also the adversarial labels of the val and test sets
if not os.path.isfile(os.path.join(attack_dir, 'y_val_targets.npy')):
y_val_targets = random_targets(y_val_sparse , feeder.num_classes)
y_test_targets = random_targets(y_test_sparse, feeder.num_classes)
assert (y_val_targets.argmax(axis=1) != y_val_sparse).all()
assert (y_test_targets.argmax(axis=1) != y_test_sparse).all()
np.save(os.path.join(attack_dir, 'y_val_targets.npy') , y_val_targets)
np.save(os.path.join(attack_dir, 'y_test_targets.npy'), y_test_targets)
else:
y_val_targets = np.load(os.path.join(attack_dir, 'y_val_targets.npy'))
y_test_targets = np.load(os.path.join(attack_dir, 'y_test_targets.npy'))
# Use Image Parameters
img_rows, img_cols, nchannels = X_test.shape[1:4]
nb_classes = y_test.shape[1]
# Define input TF placeholder
x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, nchannels), name='x')
y = tf.placeholder(tf.float32, shape=(None, nb_classes), name='y')
model = DarkonReplica(scope=ARCH_NAME[FLAGS.dataset], nb_classes=feeder.num_classes, n=5, input_shape=[32, 32, 3])
preds = model.get_predicted_class(x)
logits = model.get_logits(x)
embeddings = model.get_embeddings(x)
loss = CrossEntropy(model, smoothing=LABEL_SMOOTHING[FLAGS.dataset])
regu_losses = WeightDecay(model)
full_loss = WeightedSum(model, [(1.0, loss), (weight_decay, regu_losses)])
# loading the checkpoint
saver = tf.train.Saver()
checkpoint_path = os.path.join(model_dir, 'best_model.ckpt')
saver.restore(sess, checkpoint_path)
# predict labels from trainset
if USE_TRAIN_MINI:
train_preds_file = os.path.join(model_dir, 'x_train_mini_preds.npy')
train_features_file = os.path.join(model_dir, 'x_train_mini_features.npy')
else:
train_preds_file = os.path.join(model_dir, 'x_train_preds.npy')
train_features_file = os.path.join(model_dir, 'x_train_features.npy')
if not os.path.isfile(train_preds_file):
tf_inputs = [x, y]
tf_outputs = [preds, embeddings]
numpy_inputs = [X_train, y_train]
x_train_preds, x_train_features = batch_eval(sess, tf_inputs, tf_outputs, numpy_inputs, FLAGS.batch_size)
x_train_preds = x_train_preds.astype(np.int32)
np.save(train_preds_file, x_train_preds)
np.save(train_features_file, x_train_features)
else:
x_train_preds = np.load(train_preds_file)
x_train_features = np.load(train_features_file)
# predict labels from validation set
if not os.path.isfile(os.path.join(model_dir, 'x_val_preds.npy')):
tf_inputs = [x, y]
tf_outputs = [preds, embeddings]
numpy_inputs = [X_val, y_val]
x_val_preds, x_val_features = batch_eval(sess, tf_inputs, tf_outputs, numpy_inputs, FLAGS.batch_size)
x_val_preds = x_val_preds.astype(np.int32)
np.save(os.path.join(model_dir, 'x_val_preds.npy') , x_val_preds)
np.save(os.path.join(model_dir, 'x_val_features.npy'), x_val_features)
else:
x_val_preds = np.load(os.path.join(model_dir, 'x_val_preds.npy'))
x_val_features = np.load(os.path.join(model_dir, 'x_val_features.npy'))
# predict labels from test set
if not os.path.isfile(os.path.join(model_dir, 'x_test_preds.npy')):
tf_inputs = [x, y]
tf_outputs = [preds, embeddings]
numpy_inputs = [X_test, y_test]
x_test_preds, x_test_features = batch_eval(sess, tf_inputs, tf_outputs, numpy_inputs, FLAGS.batch_size)
x_test_preds = x_test_preds.astype(np.int32)
np.save(os.path.join(model_dir, 'x_test_preds.npy') , x_test_preds)
np.save(os.path.join(model_dir, 'x_test_features.npy'), x_test_features)
else:
x_test_preds = np.load(os.path.join(model_dir, 'x_test_preds.npy'))
x_test_features = np.load(os.path.join(model_dir, 'x_test_features.npy'))
# initialize adversarial examples if necessary
if not os.path.exists(os.path.join(attack_dir, 'X_val_adv.npy')):
y_adv = tf.placeholder(tf.float32, shape=(None, nb_classes), name='y_adv')
# Initialize the advarsarial attack object and graph
deepfool_params = {
'clip_min': 0.0,
'clip_max': 1.0
}
jsma_params = {
'clip_min': 0.0,
'clip_max': 1.0,
'theta': 1.0,
'gamma': 0.1,
}
cw_params = {
'clip_min': 0.0,
'clip_max': 1.0,
'batch_size': 125, # NOTE: you might need to reduce the batch size if your GPU has low memory.
'confidence': 0.8,
'learning_rate': 0.01,
'initial_const': 0.1
}
fgsm_params = {
'clip_min': 0.0,
'clip_max': 1.0,
'eps': 0.1
}
pgd_params = {
'clip_min': 0.0,
'clip_max': 1.0,
'eps': 0.02,
'eps_iter': 0.002,
'ord': np.inf
}
ead_params = {
'clip_min': 0.0,
'clip_max': 1.0,
'batch_size': 125,
'confidence': 0.8,
'learning_rate': 0.01,
'initial_const': 0.1,
'decision_rule': 'L1'
}
if TARGETED:
jsma_params.update({'y_target': y_adv})
cw_params.update({'y_target': y_adv})
fgsm_params.update({'y_target': y_adv})
pgd_params.update({'y_target': y_adv})
ead_params.update({'y_target': y_adv})
if FLAGS.attack == 'deepfool':
attack_params = deepfool_params
attack_class = DeepFool
elif FLAGS.attack == 'jsma':
attack_params = jsma_params
attack_class = SaliencyMapMethod
elif FLAGS.attack == 'cw':
attack_params = cw_params
attack_class = CarliniWagnerL2
elif FLAGS.attack == 'fgsm':
attack_params = fgsm_params
attack_class = FastGradientMethod
elif FLAGS.attack == 'pgd':
attack_params = pgd_params
attack_class = MadryEtAl
elif FLAGS.attack == 'ead':
attack_params = ead_params
attack_class = ElasticNetMethod
else:
raise AssertionError('Attack {} is not supported'.format(FLAGS.attack))
attack = attack_class(model, sess=sess)
adv_x = attack.generate(x, **attack_params)
preds_adv = model.get_predicted_class(adv_x)
logits_adv = model.get_logits(adv_x)
embeddings_adv = model.get_embeddings(adv_x)
# val attack
tf_inputs = [x, y]
tf_outputs = [adv_x, preds_adv, embeddings_adv]
numpy_inputs = [X_val, y_val]
if TARGETED:
tf_inputs.append(y_adv)
numpy_inputs.append(y_val_targets)
X_val_adv, x_val_preds_adv, x_val_features_adv = batch_eval(sess, tf_inputs, tf_outputs, numpy_inputs, FLAGS.batch_size)
x_val_preds_adv = x_val_preds_adv.astype(np.int32)
np.save(os.path.join(attack_dir, 'X_val_adv.npy') , X_val_adv)
np.save(os.path.join(attack_dir, 'x_val_preds_adv.npy') , x_val_preds_adv)
np.save(os.path.join(attack_dir, 'x_val_features_adv.npy'), x_val_features_adv)
# test attack
tf_inputs = [x, y]
tf_outputs = [adv_x, preds_adv, embeddings_adv]
numpy_inputs = [X_test, y_test]
if TARGETED:
tf_inputs.append(y_adv)
numpy_inputs.append(y_test_targets)
X_test_adv, x_test_preds_adv, x_test_features_adv = batch_eval(sess, tf_inputs, tf_outputs, numpy_inputs, FLAGS.batch_size)
x_test_preds_adv = x_test_preds_adv.astype(np.int32)
np.save(os.path.join(attack_dir, 'X_test_adv.npy') , X_test_adv)
np.save(os.path.join(attack_dir, 'x_test_preds_adv.npy') , x_test_preds_adv)
np.save(os.path.join(attack_dir, 'x_test_features_adv.npy'), x_test_features_adv)
else:
X_val_adv = np.load(os.path.join(attack_dir, 'X_val_adv.npy'))
x_val_preds_adv = np.load(os.path.join(attack_dir, 'x_val_preds_adv.npy'))
x_val_features_adv = np.load(os.path.join(attack_dir, 'x_val_features_adv.npy'))
X_test_adv = np.load(os.path.join(attack_dir, 'X_test_adv.npy'))
x_test_preds_adv = np.load(os.path.join(attack_dir, 'x_test_preds_adv.npy'))
x_test_features_adv = np.load(os.path.join(attack_dir, 'x_test_features_adv.npy'))
# quick computations
train_acc = np.mean(y_train_sparse == x_train_preds)
val_acc = np.mean(y_val_sparse == x_val_preds)
test_acc = np.mean(y_test_sparse == x_test_preds)
val_adv_acc = np.mean(y_val_sparse == x_val_preds_adv)
test_adv_acc = np.mean(y_test_sparse == x_test_preds_adv)
print('train set acc: {}\nvalidation set acc: {}\ntest set acc: {}'.format(train_acc, val_acc, test_acc))
print('adversarial ({}) validation set acc: {}\nadversarial ({}) test set acc: {}'.format(FLAGS.attack, val_adv_acc, FLAGS.attack, test_adv_acc))
# what are the indices of the cifar10 set which the network succeeded classifying correctly,
# but the adversarial attack changed to a different class?
info = {}
info['val'] = {}
for i, set_ind in enumerate(feeder.val_inds):
info['val'][i] = {}
net_succ = x_val_preds[i] == y_val_sparse[i]
attack_succ = x_val_preds[i] != x_val_preds_adv[i]
info['val'][i]['global_index'] = set_ind
info['val'][i]['net_succ'] = net_succ
info['val'][i]['attack_succ'] = attack_succ
info['test'] = {}
for i, set_ind in enumerate(feeder.test_inds):
info['test'][i] = {}
net_succ = x_test_preds[i] == y_test_sparse[i]
attack_succ = x_test_preds[i] != x_test_preds_adv[i]
info['test'][i]['global_index'] = set_ind
info['test'][i]['net_succ'] = net_succ
info['test'][i]['attack_succ'] = attack_succ
# calculate number of net_succ
val_net_succ_indices = [ind for ind in info['val'] if info['val'][ind]['net_succ']]
val_net_succ_attack_succ_indices = [ind for ind in info['val'] if info['val'][ind]['net_succ'] and info['val'][ind]['attack_succ']]
test_net_succ_indices = [ind for ind in info['test'] if info['test'][ind]['net_succ']]
test_net_succ_attack_succ_indices = [ind for ind in info['test'] if info['test'][ind]['net_succ'] and info['test'][ind]['attack_succ']]
val_attack_rate = len(val_net_succ_attack_succ_indices) / len(val_net_succ_indices)
test_attack_rate = len(test_net_succ_attack_succ_indices) / len(test_net_succ_indices)
print('adversarial ({}) validation attack rate: {}\nadversarial ({}) test attack rate: {}'.format(FLAGS.attack, val_attack_rate, FLAGS.attack, test_attack_rate))
info_file = os.path.join(attack_dir, 'info.pkl')
if not os.path.isfile(info_file):
print('saving info as pickle to {}'.format(info_file))
with open(info_file, 'wb') as handle:
pickle.dump(info, handle, protocol=pickle.HIGHEST_PROTOCOL)
else:
print('loading info as pickle from {}'.format(info_file))
with open(info_file, 'rb') as handle:
info_old = pickle.load(handle)
assert info == info_old
# start the knn observation
knn = NearestNeighbors(n_neighbors=feeder.get_train_size(), p=2, n_jobs=20)
knn.fit(x_train_features)
if test_val_set:
print('predicting knn for all val set')
features = x_val_features
features_adv = x_val_features_adv
else:
print('predicting knn for all test set')
features = x_test_features
features_adv = x_test_features_adv
print('predicting knn dist/indices for normal image')
all_neighbor_dists , all_neighbor_indices = knn.kneighbors(features, return_distance=True)
print('predicting knn dist/indices for adv image')
all_neighbor_dists_adv, all_neighbor_indices_adv = knn.kneighbors(features_adv, return_distance=True)
# setting pred feeder. This is our feeder which is used to generate the features for the natural images
pred_feeder = MyFeederValTest(dataset=FLAGS.dataset, rand_gen=rand_gen, as_one_hot=True,
val_inds=feeder.val_inds, test_val_set=test_val_set, mini_train_inds=mini_train_inds)
pred_feeder.val_origin_data = X_val
pred_feeder.val_data = X_val
pred_feeder.val_label = one_hot(x_val_preds, feeder.num_classes).astype(np.float32)
pred_feeder.test_origin_data = X_test
pred_feeder.test_data = X_test
pred_feeder.test_label = one_hot(x_test_preds, feeder.num_classes).astype(np.float32)
# setting adv feeder. This is our feeder which is used to generate the features for the adv images
adv_feeder = MyFeederValTest(dataset=FLAGS.dataset, rand_gen=rand_gen, as_one_hot=True,
val_inds=feeder.val_inds, test_val_set=test_val_set, mini_train_inds=mini_train_inds)
adv_feeder.val_origin_data = X_val_adv
adv_feeder.val_data = X_val_adv
adv_feeder.val_label = one_hot(x_val_preds_adv, feeder.num_classes).astype(np.float32)
adv_feeder.test_origin_data = X_test_adv
adv_feeder.test_data = X_test_adv
adv_feeder.test_label = one_hot(x_test_preds_adv, feeder.num_classes).astype(np.float32)
# now finding the influence
feeder.reset()
pred_feeder.reset()
adv_feeder.reset()
inspector_pred = darkon.Influence(
workspace=os.path.join(workspace_dir, 'pred'),
feeder=pred_feeder,
loss_op_train=full_loss.fprop(x=x, y=y),
loss_op_test=loss.fprop(x=x, y=y),
x_placeholder=x,
y_placeholder=y)
inspector_adv = darkon.Influence(
workspace=os.path.join(workspace_dir, 'adv', FLAGS.attack),
feeder=adv_feeder,
loss_op_train=full_loss.fprop(x=x, y=y),
loss_op_test=loss.fprop(x=x, y=y),
x_placeholder=x,
y_placeholder=y)
# some optimizations for the darkon influence function implementations
testset_batch_size = 100
train_batch_size = 200
train_iterations = 25 if USE_TRAIN_MINI else 245 # 5k(25x200) or 49k(245x200)
approx_params = {
'scale': 200,
'num_repeats': 5,
'recursion_depth': 5 if USE_TRAIN_MINI else 49, # 5k(5x5x200) or 49k(5x49x200)
'recursion_batch_size': 200
}
sub_relevant_indices = [ind for ind in info[FLAGS.set]]
relevant_indices = [info[FLAGS.set][ind]['global_index'] for ind in sub_relevant_indices]
# calculate knn_ranks
def find_ranks(sub_index, sorted_influence_indices, adversarial=False):
print('Finding ranks for sub_index={} (adversarial={})'.format(sub_index, adversarial))
if adversarial:
ni = all_neighbor_indices_adv
nd = all_neighbor_dists_adv
else:
ni = all_neighbor_indices
nd = all_neighbor_dists
ranks = -1 * np.ones(len(sorted_influence_indices), dtype=np.int32)
dists = -1 * np.ones(len(sorted_influence_indices), dtype=np.float32)
for target_idx in range(ranks.shape[0]):
idx = sorted_influence_indices[target_idx]
loc_in_knn = np.where(ni[sub_index] == idx)[0][0]
knn_dist = nd[sub_index, loc_in_knn]
ranks[target_idx] = loc_in_knn
dists[target_idx] = knn_dist
return ranks, dists
for i in tqdm(range(len(sub_relevant_indices))):
sub_index = sub_relevant_indices[i]
if test_val_set:
global_index = feeder.val_inds[sub_index]
else:
global_index = feeder.test_inds[sub_index]
assert global_index == relevant_indices[i]
_, real_label = feeder.test_indices(sub_index)
real_label = np.argmax(real_label)
if test_val_set:
pred_label = x_val_preds[sub_index]
else:
pred_label = x_test_preds[sub_index]
_, adv_label = adv_feeder.test_indices(sub_index)
adv_label = np.argmax(adv_label)
if info[FLAGS.set][sub_index]['attack_succ']:
assert pred_label != adv_label, 'failed for i={}, sub_index={}, global_index={}'.format(i, sub_index, global_index)
if info[FLAGS.set][sub_index]['net_succ']:
assert pred_label == real_label, 'failed for i={}, sub_index={}, global_index={}'.format(i, sub_index, global_index)
progress_str = 'sample {}/{}: calculating scores for {} index {} (sub={}).\n' \
'real label: {}, adv label: {}, pred label: {}. net_succ={}, attack_succ={}' \
.format(i + 1, len(sub_relevant_indices), FLAGS.set, global_index, sub_index,
_classes[FLAGS.dataset][real_label], _classes[FLAGS.dataset][adv_label], _classes[FLAGS.dataset][pred_label],
info[FLAGS.set][sub_index]['net_succ'], info[FLAGS.set][sub_index]['attack_succ'])
logging.info(progress_str)
print(progress_str)
cases = ['pred', 'adv']
for case in cases:
if case == 'pred':
insp = inspector_pred
feed = pred_feeder
ni = all_neighbor_indices
nd = all_neighbor_dists
elif case == 'adv':
insp = inspector_adv
feed = adv_feeder
ni = all_neighbor_indices_adv
nd = all_neighbor_dists_adv
# creating the relevant index folders
dir = os.path.join(model_dir, FLAGS.set, FLAGS.set + '_index_{}'.format(global_index), case)
if case == 'adv':
dir = os.path.join(dir, FLAGS.attack)
if not os.path.exists(dir):
os.makedirs(dir)
if os.path.exists(os.path.join(dir, 'scores.npy')):
print('calcaulation for global index {} was already done. Leaving it'.format(global_index))
continue
start_time = time.time()
scores = insp.upweighting_influence_batch(
sess=sess,
test_indices=[sub_index],
test_batch_size=testset_batch_size,
approx_params=approx_params,
train_batch_size=train_batch_size,
train_iterations=train_iterations)
print('ihvp + scores calculation time: {} secs. global_index: {} (sub: {}), case: {}'
.format(time.time() - start_time, global_index, sub_index, case))
np.save(os.path.join(dir, 'scores.npy'), scores)
# Just plotting and extra information. Not mandatory to go over it, but useful for visualization and debugging.
print('saving image to {}'.format(os.path.join(dir, 'image.npy/png')))
image, _ = feed.test_indices(sub_index)
imageio.imwrite(os.path.join(dir, 'image.png'), image)
np.save(os.path.join(dir, 'image.npy'), image)
sorted_indices = np.argsort(scores)
harmful = sorted_indices[:50]
helpful = sorted_indices[-50:][::-1]
# have some figures
cnt_harmful_in_knn = 0
print('\nHarmful:')
for idx in harmful:
print('[{}] {}'.format(feed.get_global_index('train', idx), scores[idx]))
if idx in ni[sub_index, 0:50]:
cnt_harmful_in_knn += 1
harmful_summary_str = '{}: {} out of {} harmful images are in the {}-NN\n'.format(case, cnt_harmful_in_knn, len(harmful), 50)
print(harmful_summary_str)
cnt_helpful_in_knn = 0
print('\nHelpful:')
for idx in helpful:
print('[{}] {}'.format(feed.get_global_index('train', idx), scores[idx]))
if idx in ni[sub_index, 0:50]:
cnt_helpful_in_knn += 1
helpful_summary_str = '{}: {} out of {} helpful images are in the {}-NN\n'.format(case, cnt_helpful_in_knn, len(helpful), 50)
print(helpful_summary_str)
fig, axes1 = plt.subplots(5, 10, figsize=(30, 10))
target_idx = 0
for j in range(5):
for k in range(10):
idx = ni[sub_index, target_idx]
axes1[j][k].set_axis_off()
axes1[j][k].imshow(X_train[idx])
label_str = _classes[FLAGS.dataset][y_train_sparse[idx]]
axes1[j][k].set_title('[{}]: {}'.format(feed.get_global_index('train', idx), label_str))
target_idx += 1
plt.savefig(os.path.join(dir, 'nearest_neighbors.png'), dpi=350)
plt.close()
helpful_ranks, helpful_dists = find_ranks(sub_index, sorted_indices[-1000:][::-1], case == 'adv')
harmful_ranks, harmful_dists = find_ranks(sub_index, sorted_indices[:1000], case == 'adv')
print('saving knn ranks and dists to {}'.format(dir))
np.save(os.path.join(dir, 'helpful_ranks.npy'), helpful_ranks)
np.save(os.path.join(dir, 'helpful_dists.npy'), helpful_dists)
np.save(os.path.join(dir, 'harmful_ranks.npy'), harmful_ranks)
np.save(os.path.join(dir, 'harmful_dists.npy'), harmful_dists)
fig, axes1 = plt.subplots(5, 10, figsize=(30, 10))
target_idx = 0
for j in range(5):
for k in range(10):
idx = helpful[target_idx]
axes1[j][k].set_axis_off()
axes1[j][k].imshow(X_train[idx])
label_str = _classes[FLAGS.dataset][y_train_sparse[idx]]
loc_in_knn = np.where(ni[sub_index] == idx)[0][0]
axes1[j][k].set_title('[{}]: {} #nn:{}'.format(feed.get_global_index('train', idx), label_str, loc_in_knn))
target_idx += 1
plt.savefig(os.path.join(dir, 'helpful.png'), dpi=350)
plt.close()
fig, axes1 = plt.subplots(5, 10, figsize=(30, 10))
target_idx = 0
for j in range(5):
for k in range(10):
idx = harmful[target_idx]
axes1[j][k].set_axis_off()
axes1[j][k].imshow(X_train[idx])
label_str = _classes[FLAGS.dataset][y_train_sparse[idx]]
loc_in_knn = np.where(ni[sub_index] == idx)[0][0]
axes1[j][k].set_title('[{}]: {} #nn:{}'.format(feed.get_global_index('train', idx), label_str, loc_in_knn))
target_idx += 1
plt.savefig(os.path.join(dir, 'harmful.png'), dpi=350)
plt.close()
# getting two ranks - one rank for the real label and another rank for the adv label.
# what is a "rank"?
# A rank is the average nearest neighbor location of all the helpful training indices.
with open(os.path.join(dir, 'summary.txt'), 'w+') as f:
f.write(harmful_summary_str)
f.write(helpful_summary_str)
f.write('label ({} -> {}). pred: {}. {} \nhelpful/harmful_rank mean: {}/{}\nhelpful/harmful_dist mean: {}/{}' \
.format(_classes[FLAGS.dataset][real_label], _classes[FLAGS.dataset][adv_label],
_classes[FLAGS.dataset][pred_label], case, helpful_ranks.mean(), harmful_ranks.mean(),
helpful_dists.mean(), harmful_dists.mean()))