-
Notifications
You must be signed in to change notification settings - Fork 88
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Cuda kernels for the upper triangular solver #342
Conversation
a34d3d3
to
058f37e
Compare
Codecov Report
@@ Coverage Diff @@
## develop #342 +/- ##
===========================================
+ Coverage 98.25% 98.26% +<.01%
===========================================
Files 246 247 +1
Lines 18414 18466 +52
===========================================
+ Hits 18093 18145 +52
Misses 321 321
Continue to review full report at Codecov.
|
94a7e84
to
ff77fb1
Compare
ff77fb1
to
abad1f3
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I would like to see some changes to this PR.
4a237d9
to
bdf617a
Compare
+ Adds automatic setting and resetting of the {CULIBS}_POINTER_MODE from HOST to DEVICE + Adds the pointer_mode_guards to dense kernels and cuda_linops in benchmarks as well.
bdf617a
to
45594da
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If the only difference between upper_triangular and lower_triangular is the FillMode, you can move the same part to a new cuh header file to avoid the duplicated lines from Sonar.
b890a74
to
5b08ab0
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM. Some not important comment.
5b08ab0
to
acc1fe7
Compare
+ Remove code duplication in cuda kernels by moving common code to a .cuh file. + Update the artifacts uploading in the YML file to circumvent the GITLAB limits.
acc1fe7
to
01eadd0
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good, but I am missing some comments and documentation.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM!
0c8a98f
to
3517023
Compare
The Ginkgo team is proud to announce the new minor release of Ginkgo version 1.1.0. This release brings several performance improvements, adds Windows support, adds support for factorizations inside Ginkgo and a new ILU preconditioner based on ParILU algorithm, among other things. For detailed information, check the respective issue. Supported systems and requirements: + For all platforms, cmake 3.9+ + Linux and MacOS + gcc: 5.3+, 6.3+, 7.3+, 8.1+ + clang: 3.9+ + Intel compiler: 2017+ + Apple LLVM: 8.0+ + CUDA module: CUDA 9.0+ + Windows + MinGW and CygWin: gcc 5.3+, 6.3+, 7.3+, 8.1+ + Microsoft Visual Studio: VS 2017 15.7+ + CUDA module: CUDA 9.0+, Microsoft Visual Studio + OpenMP module: MinGW or CygWin. The current known issues can be found in the [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues). Additions: + Upper and lower triangular solvers ([#327](#327), [#336](#336), [#341](#341), [#342](#342)) + New factorization support in Ginkgo, and addition of the ParILU algorithm ([#305](#305), [#315](#315), [#319](#319), [#324](#324)) + New ILU preconditioner ([#348](#348), [#353](#353)) + Windows MinGW and Cygwin support ([#347](#347)) + Windows Visual studio support ([#351](#351)) + New example showing how to use ParILU as a preconditioner ([#358](#358)) + New example on using loggers for debugging ([#360](#360)) + Add two new 9pt and 27pt stencil examples ([#300](#300), [#306](#306)) + Allow benchmarking CuSPARSE spmv formats through Ginkgo's benchmarks ([#303](#303)) + New benchmark for sparse matrix format conversions ([#312](https://github.com/ginkgo-project/ginkgo/issues/312)[#317](https://github.com/ginkgo-project/ginkgo/issues/317)) + Add conversions between CSR and Hybrid formats ([#302](#302), [#310](#310)) + Support for sorting rows in the CSR format by column idices ([#322](#322)) + Addition of a CUDA COO SpMM kernel for improved performance ([#345](#345)) + Addition of a LinOp to handle perturbations of the form (identity + scalar * basis * projector) ([#334](#334)) + New sparsity matrix representation format with Reference and OpenMP kernels ([#349](#349), [#350](#350)) Fixes: + Accelerate GMRES solver for CUDA executor ([#363](#363)) + Fix BiCGSTAB solver convergence ([#359](#359)) + Fix CGS logging by reporting the residual for every sub iteration ([#328](#328)) + Fix CSR,Dense->Sellp conversion's memory access violation ([#295](#295)) + Accelerate CSR->Ell,Hybrid conversions on CUDA ([#313](#313), [#318](#318)) + Fixed slowdown of COO SpMV on OpenMP ([#340](#340)) + Fix gcc 6.4.0 internal compiler error ([#316](#316)) + Fix compilation issue on Apple clang++ 10 ([#322](#322)) + Make Ginkgo able to compile on Intel 2017 and above ([#337](#337)) + Make the benchmarks spmv/solver use the same matrix formats ([#366](#366)) + Fix self-written isfinite function ([#348](#348)) + Fix Jacobi issues shown by cuda-memcheck Tools and ecosystem: + Multiple improvements to the CI system and tools ([#296](#296), [#311](#311), [#365](#365)) + Multiple improvements to the Ginkgo containers ([#328](#328), [#361](#361)) + Add sonarqube analysis to Ginkgo ([#304](#304), [#308](#308), [#309](#309)) + Add clang-tidy and iwyu support to Ginkgo ([#298](#298)) + Improve Ginkgo's support of xSDK M12 policy by adding the `TPL_` arguments to CMake ([#300](#300)) + Add support for the xSDK R7 policy ([#325](#325)) + Fix examples in html documentation ([#367](#367))
The Ginkgo team is proud to announce the new minor release of Ginkgo version 1.1.0. This release brings several performance improvements, adds Windows support, adds support for factorizations inside Ginkgo and a new ILU preconditioner based on ParILU algorithm, among other things. For detailed information, check the respective issue. Supported systems and requirements: + For all platforms, cmake 3.9+ + Linux and MacOS + gcc: 5.3+, 6.3+, 7.3+, 8.1+ + clang: 3.9+ + Intel compiler: 2017+ + Apple LLVM: 8.0+ + CUDA module: CUDA 9.0+ + Windows + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, 8.1+ + Microsoft Visual Studio: VS 2017 15.7+ + CUDA module: CUDA 9.0+, Microsoft Visual Studio + OpenMP module: MinGW or Cygwin. The current known issues can be found in the [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues). ### Additions + Upper and lower triangular solvers ([#327](#327), [#336](#336), [#341](#341), [#342](#342)) + New factorization support in Ginkgo, and addition of the ParILU algorithm ([#305](#305), [#315](#315), [#319](#319), [#324](#324)) + New ILU preconditioner ([#348](#348), [#353](#353)) + Windows MinGW and Cygwin support ([#347](#347)) + Windows Visual Studio support ([#351](#351)) + New example showing how to use ParILU as a preconditioner ([#358](#358)) + New example on using loggers for debugging ([#360](#360)) + Add two new 9pt and 27pt stencil examples ([#300](#300), [#306](#306)) + Allow benchmarking CuSPARSE spmv formats through Ginkgo's benchmarks ([#303](#303)) + New benchmark for sparse matrix format conversions ([#312](https://github.com/ginkgo-project/ginkgo/issues/312)[#317](https://github.com/ginkgo-project/ginkgo/issues/317)) + Add conversions between CSR and Hybrid formats ([#302](#302), [#310](#310)) + Support for sorting rows in the CSR format by column idices ([#322](#322)) + Addition of a CUDA COO SpMM kernel for improved performance ([#345](#345)) + Addition of a LinOp to handle perturbations of the form (identity + scalar * basis * projector) ([#334](#334)) + New sparsity matrix representation format with Reference and OpenMP kernels ([#349](#349), [#350](#350)) ### Fixes + Accelerate GMRES solver for CUDA executor ([#363](#363)) + Fix BiCGSTAB solver convergence ([#359](#359)) + Fix CGS logging by reporting the residual for every sub iteration ([#328](#328)) + Fix CSR,Dense->Sellp conversion's memory access violation ([#295](#295)) + Accelerate CSR->Ell,Hybrid conversions on CUDA ([#313](#313), [#318](#318)) + Fixed slowdown of COO SpMV on OpenMP ([#340](#340)) + Fix gcc 6.4.0 internal compiler error ([#316](#316)) + Fix compilation issue on Apple clang++ 10 ([#322](#322)) + Make Ginkgo able to compile on Intel 2017 and above ([#337](#337)) + Make the benchmarks spmv/solver use the same matrix formats ([#366](#366)) + Fix self-written isfinite function ([#348](#348)) + Fix Jacobi issues shown by cuda-memcheck ### Tools and ecosystem improvements + Multiple improvements to the CI system and tools ([#296](#296), [#311](#311), [#365](#365)) + Multiple improvements to the Ginkgo containers ([#328](#328), [#361](#361)) + Add sonarqube analysis to Ginkgo ([#304](#304), [#308](#308), [#309](#309)) + Add clang-tidy and iwyu support to Ginkgo ([#298](#298)) + Improve Ginkgo's support of xSDK M12 policy by adding the `TPL_` arguments to CMake ([#300](#300)) + Add support for the xSDK R7 policy ([#325](#325)) + Fix examples in html documentation ([#367](#367)) Related PR: #370
This PR adds the cusparse cuda kernels for the Upper Triangular solver.
TODO