-
Notifications
You must be signed in to change notification settings - Fork 45
/
ResUnet3d_pytorch.py
433 lines (331 loc) · 14.5 KB
/
ResUnet3d_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.nn.init as init
import numpy as np
'''
Ordinary UNet Conv Block
'''
class UNetConvBlock(nn.Module):
def __init__(self, in_size, out_size, kernel_size=3, activation=F.relu):
super(UNetConvBlock, self).__init__()
self.conv = nn.Conv3d(in_size, out_size, kernel_size, stride=1, padding=1)
self.bn = nn.BatchNorm3d(out_size)
self.conv2 = nn.Conv3d(out_size, out_size, kernel_size, stride=1, padding=1)
self.bn2 = nn.BatchNorm3d(out_size)
self.activation = activation
init.xavier_uniform(self.conv.weight, gain = np.sqrt(2.0))
init.constant(self.conv.bias,0)
init.xavier_uniform(self.conv2.weight, gain = np.sqrt(2.0))
init.constant(self.conv2.bias,0)
def forward(self, x):
out = self.activation(self.bn(self.conv(x)))
out = self.activation(self.bn2(self.conv2(out)))
return out
'''
two-layer residual unit: two conv with BN/relu and identity mapping
'''
class residualUnit(nn.Module):
def __init__(self, in_size, out_size, kernel_size=3,stride=1, padding=1, activation=F.relu):
super(residualUnit, self).__init__()
self.conv1 = nn.Conv3d(in_size, out_size, kernel_size, stride=1, padding=1)
init.xavier_uniform(self.conv1.weight, gain = np.sqrt(2.0)) #or gain=1
init.constant(self.conv1.bias, 0)
self.conv2 = nn.Conv3d(out_size, out_size, kernel_size, stride=1, padding=1)
init.xavier_uniform(self.conv2.weight, gain = np.sqrt(2.0)) #or gain=1
init.constant(self.conv2.bias, 0)
self.activation = activation
self.bn1 = nn.BatchNorm3d(out_size)
self.bn2 = nn.BatchNorm3d(out_size)
self.in_size = in_size
self.out_size = out_size
if in_size != out_size:
self.convX = nn.Conv3d(in_size, out_size, kernel_size=1, stride=1, padding=0)
self.bnX = nn.BatchNorm3d(out_size)
def forward(self, x):
out1 = self.activation(self.bn1(self.conv1(x)))
out2 = self.activation(self.bn1(self.conv2(out1)))
if self.in_size!=self.out_size:
bridge = self.activation(self.bnX(self.convX(x)))
output = torch.add(out2, bridge)
return output
'''
Ordinary UNet-Up Conv Block
'''
class UNetUpBlock(nn.Module):
def __init__(self, in_size, out_size, kernel_size=3, activation=F.relu, space_dropout=False):
super(UNetUpBlock, self).__init__()
self.up = nn.ConvTranspose3d(in_size, out_size, 2, stride=2)
self.bnup = nn.BatchNorm3d(out_size)
self.conv = nn.Conv3d(in_size, out_size, kernel_size, stride=1, padding=1)
self.bn = nn.BatchNorm3d(out_size)
self.conv2 = nn.Conv3d(out_size, out_size, kernel_size, stride=1, padding=1)
self.bn2 = nn.BatchNorm3d(out_size)
self.activation = activation
init.xavier_uniform(self.up.weight, gain = np.sqrt(2.0))
init.constant(self.up.bias,0)
init.xavier_uniform(self.conv.weight, gain = np.sqrt(2.0))
init.constant(self.conv.bias,0)
init.xavier_uniform(self.conv2.weight, gain = np.sqrt(2.0))
init.constant(self.conv2.bias,0)
def center_crop(self, layer, target_size):
batch_size, n_channels, layer_width, layer_height, layer_depth = layer.size()
xy1 = (layer_width - target_size) // 2
return layer[:, :, xy1:(xy1 + target_size), xy1:(xy1 + target_size)]
def forward(self, x, bridge):
up = self.up(x)
up = self.activation(self.bnup(up))
crop1 = self.center_crop(bridge, up.size()[2])
out = torch.cat([up, crop1], 1)
out = self.activation(self.bn(self.conv(out)))
out = self.activation(self.bn2(self.conv2(out)))
return out
'''
Ordinary Residual UNet-Up Conv Block
'''
class UNetUpResBlock(nn.Module):
def __init__(self, in_size, out_size, kernel_size=3, activation=F.relu, space_dropout=False):
super(UNetUpResBlock, self).__init__()
self.up = nn.ConvTranspose3d(in_size, out_size, 2, stride=2)
self.bnup = nn.BatchNorm3d(out_size)
init.xavier_uniform(self.up.weight, gain = np.sqrt(2.0))
init.constant(self.up.bias,0)
self.activation = activation
self.resUnit = residualUnit(in_size, out_size, kernel_size = kernel_size)
def center_crop(self, layer, target_size):
batch_size, n_channels, layer_width, layer_height, layer_depth = layer.size()
xy1 = (layer_width - target_size) // 2
return layer[:, :, xy1:(xy1 + target_size), xy1:(xy1 + target_size), xy1:(xy1 + target_size)]
def forward(self, x, bridge):
#print 'x.shape: ',x.shape
up = self.activation(self.bnup(self.up(x)))
#crop1 = self.center_crop(bridge, up.size()[2])
#print 'up.shape: ',up.shape, ' crop1.shape: ',crop1.shape
crop1 = bridge
out = torch.cat([up, crop1], 1)
out = self.resUnit(out)
# out = self.activation(self.bn2(self.conv2(out)))
return out
'''
Ordinary UNet
'''
class UNet(nn.Module):
def __init__(self, in_channel = 1, n_classes = 4):
super(UNet, self).__init__()
# self.imsize = imsize
self.activation = F.relu
self.pool1 = nn.MaxPool3d(2)
self.pool2 = nn.MaxPool3d(2)
self.pool3 = nn.MaxPool3d(2)
# self.pool4 = nn.MaxPool3d(2)
self.conv_block1_64 = UNetConvBlock(in_channel, 32)
self.conv_block64_128 = UNetConvBlock(32, 64)
self.conv_block128_256 = UNetConvBlock(64, 128)
self.conv_block256_512 = UNetConvBlock(128, 256)
# self.conv_block512_1024 = UNetConvBlock(512, 1024)
# this kind of symmetric design is awesome, it automatically solves the number of channels during upsamping
# self.up_block1024_512 = UNetUpBlock(1024, 512)
self.up_block512_256 = UNetUpBlock(256, 128)
self.up_block256_128 = UNetUpBlock(128, 64)
self.up_block128_64 = UNetUpBlock(64, 32)
self.last = nn.Conv3d(32, n_classes, 1, stride=1)
def forward(self, x):
# print 'line 70 ',x.size()
block1 = self.conv_block1_64(x)
pool1 = self.pool1(block1)
block2 = self.conv_block64_128(pool1)
pool2 = self.pool2(block2)
block3 = self.conv_block128_256(pool2)
pool3 = self.pool3(block3)
block4 = self.conv_block256_512(pool3)
# pool4 = self.pool4(block4)
#
# block5 = self.conv_block512_1024(pool4)
#
# up1 = self.up_block1024_512(block5, block4)
up2 = self.up_block512_256(block4, block3)
up3 = self.up_block256_128(up2, block2)
up4 = self.up_block128_64(up3, block1)
return self.last(up4)
'''
Ordinary ResUNet
'''
class ResUNet(nn.Module):
def __init__(self, in_channel=1, n_classes=4):
super(ResUNet, self).__init__()
# self.imsize = imsize
self.activation = F.relu
self.pool1 = nn.MaxPool3d(2)
self.pool2 = nn.MaxPool3d(2)
self.pool3 = nn.MaxPool3d(2)
# self.pool4 = nn.MaxPool3d(2)
self.conv_block1_64 = UNetConvBlock(in_channel, 32)
self.conv_block64_128 = residualUnit(32, 64)
self.conv_block128_256 = residualUnit(64, 128)
self.conv_block256_512 = residualUnit(128, 256)
# self.conv_block512_1024 = residualUnit(512, 1024)
# this kind of symmetric design is awesome, it automatically solves the number of channels during upsamping
# self.up_block1024_512 = UNetUpResBlock(1024, 512)
self.up_block512_256 = UNetUpResBlock(256, 128)
self.up_block256_128 = UNetUpResBlock(128, 64)
self.up_block128_64 = UNetUpResBlock(64, 32)
self.last = nn.Conv3d(32, n_classes, 1, stride=1)
def forward(self, x):
# print 'line 70 ',x.size()
block1 = self.conv_block1_64(x)
pool1 = self.pool1(block1)
block2 = self.conv_block64_128(pool1)
pool2 = self.pool2(block2)
block3 = self.conv_block128_256(pool2)
pool3 = self.pool3(block3)
block4 = self.conv_block256_512(pool3)
# pool4 = self.pool4(block4)
#
# block5 = self.conv_block512_1024(pool4)
#
# up1 = self.up_block1024_512(block5, block4)
up2 = self.up_block512_256(block4, block3)
up3 = self.up_block256_128(up2, block2)
up4 = self.up_block128_64(up3, block1)
return self.last(up4)
'''
UNet (lateral connection) with long-skip residual connection (from 1st to last layer)
'''
class UNet_LRes(nn.Module):
def __init__(self, in_channel = 1, n_classes = 4):
super(UNet_LRes, self).__init__()
# self.imsize = imsize
self.activation = F.relu
self.pool1 = nn.MaxPool3d(2)
self.pool2 = nn.MaxPool3d(2)
self.pool3 = nn.MaxPool3d(2)
# self.pool4 = nn.MaxPool3d(2)
self.conv_block1_64 = UNetConvBlock(in_channel, 32)
self.conv_block64_128 = UNetConvBlock(32, 64)
self.conv_block128_256 = UNetConvBlock(64, 128)
self.conv_block256_512 = UNetConvBlock(128, 256)
# self.conv_block512_1024 = UNetConvBlock(512, 1024)
# this kind of symmetric design is awesome, it automatically solves the number of channels during upsamping
# self.up_block1024_512 = UNetUpBlock(1024, 512)
self.up_block512_256 = UNetUpBlock(256, 128)
self.up_block256_128 = UNetUpBlock(128, 64)
self.up_block128_64 = UNetUpBlock(64, 32)
self.last = nn.Conv3d(32, n_classes, 1, stride=1)
def forward(self, x, res_x):
# print 'line 70 ',x.size()
block1 = self.conv_block1_64(x)
pool1 = self.pool1(block1)
block2 = self.conv_block64_128(pool1)
pool2 = self.pool2(block2)
block3 = self.conv_block128_256(pool2)
pool3 = self.pool3(block3)
block4 = self.conv_block256_512(pool3)
# pool4 = self.pool4(block4)
# block5 = self.conv_block512_1024(pool4)
#
# up1 = self.up_block1024_512(block5, block4)
up2 = self.up_block512_256(block4, block3)
up3 = self.up_block256_128(up2, block2)
up4 = self.up_block128_64(up3, block1)
last = self.last(up4)
#print 'res_x.shape is ',res_x.shape,' and last.shape is ',last.shape
if len(res_x.shape)==3:
res_x = res_x.unsqueeze(1)
out = torch.add(last,res_x)
#print 'out.shape is ',out.shape
return out
'''
ResUNet (lateral connection) with long-skip residual connection (from 1st to last layer)
'''
class ResUNet_LRes(nn.Module):
def __init__(self, in_channel=1, n_classes=4, dp_prob=0):
super(ResUNet_LRes, self).__init__()
# self.imsize = imsize
self.activation = F.relu
self.pool1 = nn.MaxPool3d(2)
self.pool2 = nn.MaxPool3d(2)
self.pool3 = nn.MaxPool3d(2)
# self.pool4 = nn.MaxPool3d(2)
self.conv_block1_64 = UNetConvBlock(in_channel, 32)
self.conv_block64_128 = residualUnit(32, 64)
self.conv_block128_256 = residualUnit(64, 128)
self.conv_block256_512 = residualUnit(128, 256)
# self.conv_block512_1024 = residualUnit(512, 1024)
# this kind of symmetric design is awesome, it automatically solves the number of channels during upsamping
# self.up_block1024_512 = UNetUpResBlock(1024, 512)
self.up_block512_256 = UNetUpResBlock(256, 128)
self.up_block256_128 = UNetUpResBlock(128, 64)
self.up_block128_64 = UNetUpResBlock(64, 32)
self.Dropout = nn.Dropout3d(p=dp_prob)
self.last = nn.Conv3d(32, n_classes, 1, stride=1)
def forward(self, x, res_x):
# print 'line 70 ',x.size()
block1 = self.conv_block1_64(x)
# print 'block1.shape: ', block1.shape
pool1 = self.pool1(block1)
# print 'pool1.shape: ', block1.shape
pool1_dp = self.Dropout(pool1)
# print 'pool1_dp.shape: ', pool1_dp.shape
block2 = self.conv_block64_128(pool1_dp)
pool2 = self.pool2(block2)
pool2_dp = self.Dropout(pool2)
block3 = self.conv_block128_256(pool2_dp)
pool3 = self.pool3(block3)
pool3_dp = self.Dropout(pool3)
block4 = self.conv_block256_512(pool3_dp)
# pool4 = self.pool4(block4)
#
# pool4_dp = self.Dropout(pool4)
#
# # block5 = self.conv_block512_1024(pool4_dp)
#
# up1 = self.up_block1024_512(block5, block4)
up2 = self.up_block512_256(block4, block3)
up3 = self.up_block256_128(up2, block2)
up4 = self.up_block128_64(up3, block1)
last = self.last(up4)
# print 'res_x.shape is ',res_x.shape,' and last.shape is ',last.shape
if len(res_x.shape) == 3:
res_x = res_x.unsqueeze(1)
out = torch.add(last, res_x)
# print 'out.shape is ',out.shape
return out
'''
Discriminator for the reconstruction project
'''
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator,self).__init__()
#you can make abbreviations for conv and fc, this is not necessary
#class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
self.conv1 = nn.Conv3d(1,32,9)
self.bn1 = nn.BatchNorm3d(32)
self.conv2 = nn.Conv3d(32,64,5)
self.bn2 = nn.BatchNorm3d(64)
self.conv3 = nn.Conv3d(64,64,5)
self.bn3 = nn.BatchNorm3d(64)
self.fc1 = nn.Linear(64*4*4,512)
#self.bn3= nn.BatchNorm1d(6)
self.fc2 = nn.Linear(512,64)
self.fc3 = nn.Linear(64,1)
def forward(self,x):
# print 'line 114: x shape: ',x.size()
#x = F.max_pool3d(F.relu(self.bn1(self.conv1(x))),(2,2,2))#conv->relu->pool
x = F.max_pool3d(F.relu(self.conv1(x)),(2,2,2))#conv->relu->pool
x = F.max_pool3d(F.relu(self.conv2(x)),(2,2,2))#conv->relu->pool
x = F.max_pool3d(F.relu(self.conv3(x)),(2,2,2))#conv->relu->pool
#reshape them into Vector, review ruturned tensor shares the same data but have different shape, same as reshape in matlab
x = x.view(-1,self.num_of_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
#x = F.sigmoid(x)
#print 'min,max,mean of x in 0st layer',x.min(),x.max(),x.mean()
return x
def num_of_flat_features(self,x):
size=x.size()[1:]#we donot consider the batch dimension
num_features=1
for s in size:
num_features*=s
return num_features