-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
59 lines (45 loc) · 1.61 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import abc
import numpy as np
import torch.utils.data
class RVDataset(torch.utils.data.Dataset, metaclass=abc.ABCMeta):
"""Random Variable Dataset abstract class."""
def __init__(self, num_samples, shape=1, static_sample=False):
assert isinstance(shape, (int, tuple))
if isinstance(shape, int):
shape = (1, shape)
self.shape = shape
self.num_samples = num_samples
if static_sample:
self.samples = [self._get_sample(i) for i in range(num_samples)]
else:
self.samples = None
def __getitem__(self, item):
if self.samples:
return self.samples[item]
return self._get_sample(item)
def __len__(self):
return self.num_samples
@abc.abstractmethod
def _get_sample(self, item):
pass
class UniformRVDataset(RVDataset):
"""Uniform Random Variable Dataset."""
def __init__(self, low=-1, high=1, **kwargs):
super().__init__(**kwargs)
self.low = low
self.high = high
def _get_sample(self, item):
return np.random.uniform(self.low, self.high, size=self.shape)
class NormalRVDataset(RVDataset):
"""Normal Random Variable Dataset."""
def __init__(self, mean=0, variance=1, **kwargs):
self.mean = mean
self.variance = variance
super().__init__(**kwargs)
def _get_sample(self, item):
return np.random.normal(self.mean, self.variance, size=self.shape)
if __name__ == '__main__':
uniform = UniformRVDataset(10, 2)
normal = NormalRVDataset(10)
for s in zip(iter(uniform), iter(normal)):
print(s)