-
Notifications
You must be signed in to change notification settings - Fork 0
/
group-1.py
376 lines (310 loc) · 12.5 KB
/
group-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# myTeam.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from captureAgents import CaptureAgent
import random, time, util
from util import nearestPoint
from game import Directions
import numpy as np
import game
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from collections import namedtuple
from torch.autograd import Variable
import pickle
class DQN(nn.Module):
def __init__(self):
super(DQN, self).__init__()
# todo: sort shapes
self.conv1 = nn.Conv2d(7, 16, 3)
self.conv2 = nn.Conv2d(16, 32, 3)
self.fc3 = nn.Linear(30*14*32, 256)
self.fc4 = nn.Linear(256, 5)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x=x.view(-1,self.num_flat_features(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
use_cuda = False
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
Tensor = FloatTensor
policy_net = DQN()
target_net = DQN()
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
BATCH_SIZE = 32
TARGET_UPDATE = 10
GAMMA = 0.99
REPLAY_PERIOD=4
load_memory=1
load_net=1
if load_net == 1:
policy_net = torch.load('silver_net_per')
if use_cuda:
policy_net.cuda()
target_net.cuda()
#################
# Team creation #
#################
def createTeam(firstIndex, secondIndex, isRed,
first='NNAgent', second='NNAgent'):
# The following line is an example only; feel free to change it.
return [eval(first)(firstIndex), eval(second)(secondIndex)]
class NNAgent(CaptureAgent):
def registerInitialState(self, gameState):
self.old_state = None
self.old_action = None
self.name = 'Petter'
self.reward = 0
self.time = 0
self.update=0
self.old_q = None
self.epsilon = 0
self.start = gameState.getAgentPosition(self.index)
CaptureAgent.registerInitialState(self, gameState)
def state_to_input(self, gameState):
walls = np.array(gameState.data.layout.walls.data, dtype=int)
capsules = np.zeros(walls.shape, dtype=int)
c1=self.getCapsulesYouAreDefending(gameState)
for c in c1:
capsules[c]+=1
c2=self.getCapsules(gameState)
for c in c2:
capsules[c] -= 1
f1=np.array(self.getFoodYouAreDefending(gameState).data,dtype=int)
f2=np.array(self.getFood(gameState).data,dtype=int)
food = f1-f2
my_agent=np.zeros(walls.shape, dtype=int)
my_pos=gameState.getAgentPosition(self.index)
if gameState.getAgentState(self.index).isPacman:
my_agent[my_pos]=1
else:
my_agent[my_pos] = -1
opponents = np.zeros(walls.shape,dtype=int)
opponents_prob= np.zeros(walls.shape)
my_mate = np.zeros(walls.shape, dtype=int)
is_scared=np.zeros(walls.shape)
for i in range(4):
pos = gameState.getAgentPosition(i)
if pos and i!=self.index:
if gameState.isOnRedTeam(i):
if self.red:
if gameState.getAgentState(i).isPacman:
my_mate[pos] = 1
else:
my_mate[pos] = -1
else:
if gameState.getAgentState(i).isPacman:
opponents[pos] = 1
else:
opponents[pos] = -1
else:
if self.red:
if gameState.getAgentState(i).isPacman:
opponents[pos] = 1
else:
opponents[pos] = -1
else:
if gameState.getAgentState(i).isPacman:
my_mate[pos] = 1
else:
my_mate[pos] = -1
if gameState.getAgentState(i).scaredTimer > 0:
if gameState.isOnRedTeam(i):
if self.red:
if i !=self.index:
is_scared-=my_mate
else:
is_scared-=my_agent
else:
if pos:
is_scared-=opponents
#else:
#is_scared+=opponents_prob
else:
if self.red:
if pos:
is_scared-=opponents
#else:
#is_scared+=opponents_prob
else:
if i !=self.index:
is_scared-=my_mate
else:
is_scared-=my_agent
#scared
state_tensor=np.stack((walls,food,capsules,my_agent,my_mate,opponents,is_scared))
return state_tensor
def action_to_int(self, action):
if action == 'North':
return 0
elif action == 'South':
return 1
elif action == 'East':
return 2
elif action == 'West':
return 3
elif action == 'Stop':
return 4
def index_to_action(self, index):
actions = ['North', 'South', 'East', 'West', 'Stop']
return actions[index]
def chooseAction(self, gameState):
"""
Picks among actions randomly.
"""
foodList = self.getFood(gameState).asList()
myPos = gameState.getAgentState(self.index).getPosition()
minDistance = min([self.getMazeDistance(myPos, food) for food in foodList])
state = self.state_to_input(gameState)
actions = gameState.getLegalActions(self.index)
# You can profile your evaluation time by uncommenting these lines
# start = time.time()
# print('eval time for agent %d: %.4f' % (self.index, time.time() - start))
Q = policy_net(
# Variable(self.state_to_input(gameState), volatile=True).type(FloatTensor)).data.max(1)[1].view(1, 1)
Variable(torch.from_numpy(state).unsqueeze(0).type(Tensor), volatile=True).type(FloatTensor)).data
Q = Q.numpy()[0]
index = np.argmax(Q)
action = self.index_to_action(index)
if np.random.random() > self.epsilon:
if action not in actions:
action = random.choice(actions)
else:
action = random.choice(actions)
return action
class ReflexCaptureAgent(CaptureAgent):
"""
A base class for reflex agents that chooses score-maximizing actions
"""
def registerInitialState(self, gameState):
self.name = 'paolo'
self.start = gameState.getAgentPosition(self.index)
CaptureAgent.registerInitialState(self, gameState)
def chooseAction(self, gameState):
"""
Picks among the actions with the highest Q(s,a).
"""
food_in_belly = gameState.getAgentState(self.index).numCarrying
if food_in_belly>0:
a=0
actions = gameState.getLegalActions(self.index)
# You can profile your evaluation time by uncommenting these lines
# start = time.time()
values = [self.evaluate(gameState, a) for a in actions]
# print('eval time for agent %d: %.4f' % (self.index, time.time() - start))
maxValue = max(values)
bestActions = [a for a, v in zip(actions, values) if v == maxValue]
foodLeft = len(self.getFood(gameState).asList())
if foodLeft <= 2:
bestDist = 9999
for action in actions:
successor = self.getSuccessor(gameState, action)
pos2 = successor.getAgentPosition(self.index)
dist = self.getMazeDistance(self.start, pos2)
if dist < bestDist:
bestAction = action
bestDist = dist
return bestAction
return random.choice(bestActions)
def getSuccessor(self, gameState, action):
"""
Finds the next successor which is a grid position (location tuple).
"""
successor = gameState.generateSuccessor(self.index, action)
pos = successor.getAgentState(self.index).getPosition()
if pos != nearestPoint(pos):
# Only half a grid position was covered
return successor.generateSuccessor(self.index, action)
else:
return successor
def evaluate(self, gameState, action):
"""
Computes a linear combination of features and feature weights
"""
features = self.getFeatures(gameState, action)
weights = self.getWeights(gameState, action)
return features * weights
def getFeatures(self, gameState, action):
"""
Returns a counter of features for the state
"""
features = util.Counter()
successor = self.getSuccessor(gameState, action)
features['successorScore'] = self.getScore(successor)
return features
def getWeights(self, gameState, action):
"""
Normally, weights do not depend on the gamestate. They can be either
a counter or a dictionary.
"""
return {'successorScore': 1.0}
class OffensiveReflexAgent(ReflexCaptureAgent):
"""
A reflex agent that seeks food. This is an agent
we give you to get an idea of what an offensive agent might look like,
but it is by no means the best or only way to build an offensive agent.
"""
def getFeatures(self, gameState, action):
features = util.Counter()
successor = self.getSuccessor(gameState, action)
foodList = self.getFood(successor).asList()
features['successorScore'] = -len(foodList) # self.getScore(successor)
# Compute distance to the nearest food
if len(foodList) > 0: # This should always be True, but better safe than sorry
myPos = successor.getAgentState(self.index).getPosition()
minDistance = min([self.getMazeDistance(myPos, food) for food in foodList])
features['distanceToFood'] = minDistance
return features
def getWeights(self, gameState, action):
return {'successorScore': 100, 'distanceToFood': -1}
class DefensiveReflexAgent(ReflexCaptureAgent):
"""
A reflex agent that keeps its side Pacman-free. Again,
this is to give you an idea of what a defensive agent
could be like. It is not the best or only way to make
such an agent.
"""
def getFeatures(self, gameState, action):
features = util.Counter()
successor = self.getSuccessor(gameState, action)
myState = successor.getAgentState(self.index)
myPos = myState.getPosition()
# Computes whether we're on defense (1) or offense (0)
features['onDefense'] = 1
if myState.isPacman: features['onDefense'] = 0
# Computes distance to invaders we can see
enemies = [successor.getAgentState(i) for i in self.getOpponents(successor)]
invaders = [a for a in enemies if a.isPacman and a.getPosition() != None]
features['numInvaders'] = len(invaders)
if len(invaders) > 0:
dists = [self.getMazeDistance(myPos, a.getPosition()) for a in invaders]
features['invaderDistance'] = min(dists)
if action == Directions.STOP: features['stop'] = 1
rev = Directions.REVERSE[gameState.getAgentState(self.index).configuration.direction]
if action == rev: features['reverse'] = 1
return features
def getWeights(self, gameState, action):
return {'numInvaders': -1000, 'onDefense': 100, 'invaderDistance': -10, 'stop': -100, 'reverse': -2}