-
Notifications
You must be signed in to change notification settings - Fork 0
/
bonus4.py
339 lines (289 loc) · 11.1 KB
/
bonus4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
import json
import numpy as np
import matplotlib.pyplot as plt
class RNN():
"""
RNN class
"""
def __init__(self,m,K):
"""
Initialize the rnn with weights
:param m: dimensionality of hidden state
:param K: aplhabet size
"""
self.b=np.zeros((m,1)) # bias vector, dimension (m,1), m is hidden state dimensionality
self.c=np.zeros((K,1)) # bias vector, dimension (K,1), K is alphabet size
#random initialization of weight matrices
self.U=np.random.normal(0,0.1,(m,K))
self.W=np.random.normal(0,0.1,(m,m))
self.V=np.random.normal(0,0.1,(K,m))
def initial_momentum(self):
"""
set the initial momentum to zero, and return the momentum for all the weights in one list
"""
m_V=np.zeros((self.V.shape))
m_W = np.zeros((self.W.shape))
m_U = np.zeros((self.U.shape))
m_c = np.zeros((self.c.shape))
m_b = np.zeros((self.b.shape))
return [m_V,m_W,m_U,m_c,m_b]
def rnn_to_list(self):
"""
:return: a list with the RNN weights
"""
weights = [self.V, self.W, self.U, self.c, self.b]
return weights
def update(self,weights):
"""
update the weights pg the RNN given a list of weights
"""
self.V=weights[0]
self.W=weights[1]
self.U = weights[2]
self.c = weights[3]
self.b = weights[4]
def load_tweets(fname):
with open(fname) as f:
data=json.load(f)
tweets=[]
chars=''
for tweet in data:
text=tweet['text']
chars+=text
tweets.append(text)
chars = list(set(chars))
chars.sort()
indices = np.arange(len(chars))
char_and_ind = np.asarray(list(zip(chars, indices)))
return char_and_ind,tweets
def generate_chars(chars_with_indices,alph_size,first_char,rnn,n,h_0):
"""
Generate synthetic text
:param chars_with_indices: array of chars coupled with an index
:param alph_size: alhabet size
:param first_char: char to begin with
:param rnn: the RNN object
:param n: Length of text to generate
:param h_0: initial hidden state
:return: the generated chars
"""
labels=[]
x_0 = to_onehot(alph_size, chars_with_indices, first_char)
a_t= rnn.W @ h_0 + rnn.U @ x_0 + rnn.b
h_t=np.tanh(a_t)
o_t= rnn.V @ h_t +rnn.c
p_t=softmax(o_t)
labels.append(char_from_index(chars_with_indices, np.where(np.random.multinomial(1, p_t[:, 0]) == 1)[0][0]))
for t in range(n-1):
x_t=to_onehot(alph_size,chars_with_indices,labels[-1])
a_t = rnn.W @ h_t + rnn.U @ x_t + rnn.b
h_t = np.tanh(a_t)
o_t = rnn.V @ h_t + rnn.c
p_t = softmax(o_t)
labels.append(char_from_index(chars_with_indices,np.where(np.random.multinomial(1, p_t[:, 0]) == 1)[0][0]))
return ''.join(labels)
def softmax(S):
return np.exp(S)/np.sum(np.exp(S),axis=0)
def index_from_char(chars_with_indices,wanted_char):
index=np.where(chars_with_indices==wanted_char)[0][0]
return index
def char_from_index(chars_with_indices,wanted_ind):
char=chars_with_indices[wanted_ind][0]
return char
def to_onehot(alph_size,chars_with_indices,my_char):
x_0 = np.zeros((alph_size, 1), dtype=int)
x_0[index_from_char(chars_with_indices, my_char)] += 1
return x_0
def seq_to_ohm(alph_size,sequence,chars_with_indices):
"""converts a sequence of chars in a onehot matrix"""
matrix=np.zeros((alph_size,len(sequence)),dtype=int)
for c,char in enumerate(sequence):
matrix[index_from_char(chars_with_indices, char ),c]+=1
return matrix
def forward(X,rnn,h_prev):
"""forwars pass"""
h_0=h_prev
h = np.zeros((rnn.b.shape[0], np.shape(X)[1]))
a = np.zeros((h.shape))
probabilities=np.zeros((X.shape))
for i,x in enumerate(X.T):
if i==0:
a[:,i] = (rnn.W @ h_0 + rnn.U @ x.reshape(-1,1) + rnn.b)[:,0]
else:
a[:,i] = (rnn.W @ h[:,i-1].reshape(-1,1) + rnn.U @ x.reshape(-1, 1) + rnn.b)[:,0]
h[:,i] = np.tanh(a[:,i])
o_t = rnn.V @ h[:,i].reshape(-1,1) + rnn.c
p_t = softmax(o_t)
probabilities[:,i]=p_t[:,0]
return probabilities,h,a
def compute_loss(X,rnn,Y,h_prev):
P,H,A=forward(X,rnn,h_prev)
return -np.sum(np.log(np.sum(Y * P, axis=0))),P, H, A
def check_grad(grad_a, grad_n, eps):
'''function to compare the analitical (grad_a) and numerical (grad_n) gradients'''
diff = np.abs(grad_a - grad_n) / max(eps, np.amax(np.abs(grad_a) + np.abs(grad_n)))
if np.amax(diff) < 1e-6:
return True
else:
return False
def compute_grad_num_slow(X, Y, rnn,h,h_prev):
'''centered difference gradient for W and Fs'''
V=rnn.V
W=rnn.W
U=rnn.U
c=rnn.c
b=rnn.b
grad_V = np.zeros((np.shape(V)))
grad_W= np.zeros((np.shape(W)))
grad_U = np.zeros((np.shape(U)))
grad_c=np.zeros((np.shape(c)))
grad_b = np.zeros((np.shape(b)))
it = np.nditer(V, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
iV = it.multi_index
old_value = V[iV]
V[iV] = old_value - h # use original value
c1,_,_,_ = compute_loss(X,rnn,Y,h_prev)
V[iV] = old_value + h # use original value
c2,_,_,_ = compute_loss(X, rnn, Y,h_prev)
grad_V[iV] = (c2 - c1) / (2 * h)
V[iV] = old_value # restore original value
it.iternext()
it = np.nditer(W, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
iW = it.multi_index
old_value = W[iW]
W[iW] = old_value - h # use original value
c1,_,_,_ = compute_loss(X,rnn,Y,h_prev)
W[iW] = old_value + h # use original value
c2,_,_,_ = compute_loss(X,rnn,Y,h_prev)
grad_W[iW] = (c2 - c1) / (2 * h)
W[iW] = old_value # restore original value
it.iternext()
it = np.nditer(U, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
iU = it.multi_index
old_value = U[iU]
U[iU] = old_value - h # use original value
c1,_,_,_ = compute_loss(X, rnn, Y,h_prev)
U[iU] = old_value + h # use original value
c2,_,_,_= compute_loss(X, rnn, Y,h_prev)
grad_U[iU] = (c2 - c1) / (2 * h)
U[iU] = old_value # restore original value
it.iternext()
it = np.nditer(c, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
ic = it.multi_index
old_value = c[ic]
c[ic] = old_value - h # use original value
c1,_,_,_ = compute_loss(X, rnn, Y,h_prev)
c[ic] = old_value + h # use original value
c2,_,_,_ = compute_loss(X, rnn, Y,h_prev)
grad_c[ic] = (c2 - c1) / (2 * h)
c[ic] = old_value # restore original value
it.iternext()
it = np.nditer(b, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
ib = it.multi_index
old_value = b[ib]
b[ib] = old_value - h # use original value
c1,_,_,_ = compute_loss(X, rnn, Y,h_prev)
b[ib] = old_value + h # use original value
c2,_,_,_ = compute_loss(X, rnn, Y,h_prev)
grad_b[ib] = (c2 - c1) / (2 * h)
b[ib] = old_value # restore original value
it.iternext()
return [grad_V,grad_W, grad_U, grad_c, grad_b]
def compute_gradients(X,Y,rnn,h_prev):
loss,P,H,A=compute_loss(X,rnn,Y,h_prev)
m=np.shape(H)[0] #100
seq_lenght=np.shape(H)[1] #25
G=-(Y-P).T
next_h=H[:,-1].reshape(-1,1).copy()
grad_c=np.sum(G,axis=0).reshape(-1,1)
grad_V=G.T @ H.T
grad_a=np.zeros((m,seq_lenght))
grad_h=np.zeros((m,seq_lenght))
grad_h[:,-1]=G[-1,:] @ rnn.V
grad_a[:,-1]= grad_h[:,-1] @ np.eye(m)*(1-np.tanh(A[:,-1])**2)
for t in reversed(range(seq_lenght-1)):
grad_h[:,t]=G[t,:] @ rnn.V + grad_a[:,t+1] @ rnn.W
grad_a[:,t]=grad_h[:,t] @ np.eye(m)*(1-np.tanh(A[:,t])**2)
H[:,1:]=H[:,:-1]
H[:,0]=h_prev[:,0]
grad_b=np.sum(grad_a,axis=1).reshape(-1,1)
grad_W=grad_a @ H.T
grad_U=grad_a @ X.T
return [grad_V, grad_W, grad_U, grad_c, grad_b], loss, next_h
def clip_gradients(grad_list):
for g in range(len(grad_list)):
grad_list[g]=np.where(grad_list[g]>5,5,grad_list[g])
grad_list[g] = np.where(grad_list[g] < -5, -5, grad_list[g])
#grad_list[g]=np.maximum(np.minimum(grad_list[g],5),-5)
return grad_list
def train(rnn,oh_tweets, seq_length, chars_with_indices, alph_size, hidden_size,n_epochs,lr):
max_lenght=140
h_prev = np.zeros((hidden_size, 1))
e=np.random.randint(0,max_lenght-seq_length)
X = oh_tweets[0][:,e:e+seq_length]
Y = oh_tweets[0][:,e + 1:e + seq_length + 1]
smooth_loss =compute_loss(X,rnn,Y,h_prev)[0]
smooth_loss_plot=[]
iterations=0
weights = rnn.rnn_to_list()
momentums=rnn.initial_momentum()
for epoch in range(n_epochs):
print(epoch)
for tweet in oh_tweets:
end=False
h_prev = np.zeros_like(h_prev)
e=0 # chars read so far
tweet_length=np.shape(tweet)[1]
if tweet_length>max_lenght:
tweet_length=max_lenght
max_e=tweet_length-seq_length-1
while e< tweet_length:
if e >= max_e:
X = tweet[:, e: tweet_length-1]
Y = tweet[:, e + 1:tweet_length]
end=True
else:
X = tweet[:, e:e + seq_length]
Y = tweet[:, e + 1:e + seq_length + 1]
gradients,loss,h_prev=compute_gradients(X,Y,rnn,h_prev)
gradients=clip_gradients(gradients)
for i in range(len(gradients)):
momentums[i]=momentums[i]+(gradients[i])**2
weights[i]=weights[i]-((lr)/(np.sqrt(momentums[i]+1e-6))*gradients[i])
rnn.update(weights)
smooth_loss=0.999*smooth_loss+0.001*loss
if iterations%100==0:
smooth_loss_plot.append(smooth_loss)
if iterations%1000==0:
print(iterations)
print(smooth_loss)
if iterations%10000==0:
my_string = generate_chars(chars_with_indices, alph_size, char_from_index(chars_with_indices,np.argwhere(X[:,-1]==1)[0][0]), rnn, 140, h_prev)
print(my_string)
e = e + seq_length
iterations += 1
if end:
break
plt.plot(smooth_loss_plot)
my_string = generate_chars(chars_with_indices, alph_size, 'R', rnn, 140,
h_prev)
print(my_string)
plt.show()
INPUT='condensed_2016.json'
h=1e-4# for numerical gradients
m=100 #dimensionality of the hidden state
seq_length=25 #length of the input sequence
chars_with_indices,tweets=load_tweets(INPUT)
K=np.size(chars_with_indices[:,0]) #alphabet size
lr=0.1
np.random.seed(100)
rnn=RNN(m,K)
oh_tweets=[]
for tweet in tweets:
oh_tweets.append(seq_to_ohm(K,tweet,chars_with_indices))
train(rnn,oh_tweets,seq_length,chars_with_indices,K,m,20,lr)