-
Notifications
You must be signed in to change notification settings - Fork 5
/
train_net.py
266 lines (210 loc) · 12.3 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import torch
from torch.autograd import Variable
import torchvision.transforms as transforms
import torchvision.transforms as standard_transforms
from tensorboard import SummaryWriter
import utils.transforms as expanded_transforms
from PIL import Image
from config import cfg
from datasets.cityscapes.config_City import processed_val_path, ignored_label
from utils.training import *
from utils.timer import Timer
def eval_net(i_epoch,i_iter,i_tb,writer,ext_model):
ext_model.eval()
# processed_val_img_path = os.path.join(processed_val_path, 'img')
processed_val_img_path = os.path.join(processed_val_path, 'img')
processed_val_mask_path = os.path.join(processed_val_path, 'mask')
valSet = []
for img_name in [img_name.split('leftImg8bit.png')[0] for img_name in os.listdir(processed_val_img_path)]:
item = (processed_val_img_path + '/' + img_name + 'leftImg8bit.png', processed_val_mask_path + '/'+ img_name + 'gtFine_labelIds.png')
valSet.append(item)
mean_std = ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
restore_transform = standard_transforms.Compose([
expanded_transforms.DeNormalize(*mean_std),
standard_transforms.ToPILImage()
])
print '='*50
print 'Start validating...'
all_pred = np.zeros((0, cfg.VAL.IMG_SIZE[0], cfg.VAL.IMG_SIZE[1]))
all_labels = np.zeros((0, cfg.VAL.IMG_SIZE[0], cfg.VAL.IMG_SIZE[1]))
i_img = 0
all_pred_list = []
all_labels_list = []
_t = {'iter' : Timer()}
for val_data in valSet:
img_path, mask_path = val_data
img = Image.open(img_path)
img = img.resize(cfg.VAL.IMG_SIZE,Image.NEAREST)
img_transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))])
img = img_transform(img)
labels = Image.open(mask_path)
labels = labels.resize(cfg.VAL.IMG_SIZE)
label_transform = standard_transforms.Compose([expanded_transforms.MaskToTensor(),
expanded_transforms.ChangeLabel(ignored_label, cfg.DATA.NUM_CLASSES - 1)])
labels = label_transform(labels)
labels = labels[None,:,:]
img = Variable(img[None,:,:,:],volatile=True).cuda()
_t['iter'].tic()
# forward ext model
# pred_val_outputs = forward_ext_model(ext_tgt_inputs = img)
pred_val_outputs = ext_model(img,train_flag=False)
_t['iter'].toc(average=True)
if i_img % 50 ==0:
print 'i_img: {:d}, net_forward: {:.3f}s'.format(i_img,_t['iter'].average_time)
pred_map = pred_val_outputs.data.cpu().max(1)[1].squeeze_(1).numpy()
all_pred_list.append(pred_map.tolist())
all_labels_list.append(labels.numpy().tolist())
i_img = i_img + 1
all_pred_np = np.array(all_pred_list)
all_labels_np = np.array(all_labels_list)
all_pred = all_pred_np.reshape((-1,all_pred_np.shape[2],all_pred_np.shape[3]))
all_labels = all_labels_np.reshape((-1,all_labels_np.shape[2],all_labels_np.shape[3]))
tgt_m_iu, tgt_class_iu = calculate_mean_iu_test(all_pred, all_labels)
# pdb.set_trace()
batch_size = cfg.TRAIN.IMG_BATCH_SIZE
writer.add_scalar('meanIU_tgt_val', tgt_m_iu, i_tb*batch_size*cfg.TRAIN.PRINT_FREQ)
print tgt_m_iu
print tgt_class_iu
ext_model.train()
print '='*50
print 'COntinue training...'
def train_adversarial(cur_epoch, i_tb, data_encoder, src_loader, tgt_loader, restore_transform,
ext_model, spvsd_cri, unspvsd_cri, det_cri,
dc_model=None, dc_cri=None, dc_invs_cri=None, dc_opt=None,
obc_model=None, obc_cri=None, obc_invs_cri=None, obc_opt=None):
writer = SummaryWriter(cfg.TRAIN.LOG_PATH)
ext_opt = set_extract_optimizer(ext_model,cur_epoch)
eval_net(cur_epoch,0,cur_epoch*37,writer,ext_model)
print '='*50
print 'Start Training FCN-8s...'
for i_epoch in range(cur_epoch, cfg.TRAIN.MAX_EPOCH):
i_tb = i_epoch*37 # 2960/40/2
if i_epoch%10 ==0 or i_epoch > 40:
ext_opt = set_extract_optimizer(ext_model,i_epoch)
# for i_iter, src_data in enumerate(src_loader, 0):
for i_iter, tgt_data in enumerate(tgt_loader, 0):
#
# prepare data
_t = {'pre_data':Timer(), 'net' : Timer()}
_t['pre_data'].tic()
ext_src_inputs, src_labels, src_bbx_ssd, src_obj_labels_ssd, src_bbx, src_obj_labels \
= iter(src_loader).next() # src_data
ext_tgt_inputs, tgt_labels, tgt_bbx_ssd, tgt_obj_labels_ssd, tgt_bbx, tgt_obj_labels \
= tgt_data # iter(tgt_loader).next()
_t['pre_data'].toc(average=False)
_t['net'].tic()
src_labels = Variable(src_labels.cuda(),requires_grad=False)
src_bbx_ssd = Variable(src_bbx_ssd.cuda(),requires_grad=False)
src_obj_labels_ssd = Variable(src_obj_labels_ssd.cuda(),requires_grad=False)
tgt_labels = Variable(tgt_labels.cuda(),requires_grad=False)
tgt_bbx_ssd = Variable(tgt_bbx_ssd.cuda(),requires_grad=False)
tgt_obj_labels_ssd = Variable(tgt_obj_labels_ssd.cuda(),requires_grad=False)
# ext model
tgt_bbx = preapre_bbx_for_roipol(tgt_bbx)
src_bbx = preapre_bbx_for_roipol(src_bbx)
pred_tgt_outputs, dc_tgt_inputs, tgt_loc_preds, tgt_conf_preds, tgt_pooled_features \
= ext_model(Variable(ext_tgt_inputs.cuda()),gt=Variable(tgt_bbx.cuda()))
pred_src_outputs, dc_src_inputs, src_loc_preds, src_conf_preds, src_pooled_features \
= ext_model(Variable(ext_src_inputs.cuda()),gt=Variable(src_bbx.cuda()))
# concat ssd ouputs and labels
loc_preds = torch.cat((src_loc_preds, tgt_loc_preds),0)
conf_preds = torch.cat((src_conf_preds, tgt_conf_preds),0)
loc_gt = torch.cat((src_bbx_ssd, tgt_bbx_ssd),0)
conf_gt = torch.cat((src_obj_labels_ssd, tgt_obj_labels_ssd),0)
# ext model
ext_opt.zero_grad()
# pdb.set_trace()
sp_loss = spvsd_cri(pred_src_outputs,src_labels)
unsp_loss = unspvsd_cri(pred_tgt_outputs,tgt_labels)
det_loss = det_cri(loc_preds, loc_gt, conf_preds, conf_gt)
ext_loss = sp_loss*cfg.TRAIN.LOSS_WEIGHT[0] + det_loss*cfg.TRAIN.LOSS_WEIGHT[1]
# dc model
if cfg.TRAIN.COM_EXP in [2,4,5]:
# generate the dc labels
dc_labels, dc_ivs_labels = gen_dc_pixels_label()
dc_inputs = torch.cat((dc_src_inputs, dc_tgt_inputs),0)
# pdb.set_trace()
dc_outputs = dc_model(dc_inputs)
dc_opt.zero_grad()
dc_loss = dc_cri(dc_outputs, dc_labels)
dc_loss.backward(retain_graph=True)
dc_opt.step()
dc_ins_loss = dc_invs_cri(dc_outputs,dc_ivs_labels)
if cfg.TRAIN.LOSS_V2:
ext_loss = ext_loss + (dc_loss+dc_ins_loss)*0.5*cfg.TRAIN.LOSS_WEIGHT[2]
else:
ext_loss = ext_loss + dc_ins_loss*cfg.TRAIN.LOSS_WEIGHT[2]
# obc model
if cfg.TRAIN.COM_EXP in [5]:
# generate the obc inputs and labels
pooled_features = torch.cat((src_pooled_features, tgt_pooled_features),0)
obc_labels, obc_ivs_labels = gen_obc_labels(src_obj_labels,tgt_obj_labels)
obc_outputs = obc_model(pooled_features)
obc_opt.zero_grad()
obc_loss = obc_cri(obc_outputs, obc_labels)
obc_loss.backward(retain_graph=True)
obc_opt.step()
obc_ins_loss = obc_invs_cri(obc_outputs,obc_ivs_labels)
if cfg.TRAIN.LOSS_V2:
ext_loss = ext_loss + (obc_loss+obc_ins_loss)*0.5*cfg.TRAIN.LOSS_WEIGHT[3]
else:
ext_loss = ext_loss + obc_ins_loss*cfg.TRAIN.LOSS_WEIGHT[3]
# only obc model
if cfg.TRAIN.COM_EXP in [6]:
# generate the obc inputs and labels
pooled_features = torch.cat((src_pooled_features, tgt_pooled_features),0)
obc_labels, obc_ivs_labels = gen_obc_labels(src_obj_labels,tgt_obj_labels)
obc_outputs = obc_model(pooled_features)
obc_opt.zero_grad()
obc_loss = obc_cri(obc_outputs, obc_labels)
obc_loss.backward(retain_graph=True)
obc_opt.step()
obc_ins_loss = obc_invs_cri(obc_outputs,obc_ivs_labels)
if cfg.TRAIN.LOSS_V2:
ext_loss = ext_loss + (obc_loss+obc_ins_loss)*0.5*cfg.TRAIN.LOSS_WEIGHT[3]
else:
ext_loss = ext_loss + obc_ins_loss*cfg.TRAIN.LOSS_WEIGHT[3]
ext_loss.backward()
ext_opt.step()
# _t['net'].toc(average=False)
# print 'pre_data: {:.3f}s, net: {:.3f}s'.format(_t['pre_data'].average_time,_t['net'].average_time)
# calculate miu and log data
if (i_iter + 1) % cfg.TRAIN.PRINT_FREQ == 0:
i_tb +=1
src_m_iu, src_class_iu = eval_ext_logs(pred_src_outputs,src_labels)
tgt_m_iu, tgt_class_iu = eval_ext_logs(pred_tgt_outputs,tgt_labels)
_t['net'].toc(average=False)
print 'pre_data: {:.3f}s, net: {:.3f}s'.format(_t['pre_data'].average_time,_t['net'].average_time)
if cfg.TRAIN.COM_EXP == 6:
logger(i_epoch,i_iter,i_tb,writer,ext_loss,sp_loss,unsp_loss,det_loss,src_m_iu,tgt_m_iu,
obc_loss=obc_loss,obc_ins_loss=obc_ins_loss)
if cfg.TRAIN.COM_EXP == 5:
logger(i_epoch,i_iter,i_tb,writer,ext_loss,sp_loss,unsp_loss,det_loss,src_m_iu,tgt_m_iu,
dc_loss=dc_loss,dc_ins_loss=dc_ins_loss,
obc_loss=obc_loss,obc_ins_loss=obc_ins_loss)
elif cfg.TRAIN.COM_EXP == 4:
logger(i_epoch,i_iter,i_tb,writer,ext_loss,sp_loss,unsp_loss,det_loss,src_m_iu,tgt_m_iu,
dc_loss=dc_loss,dc_ins_loss=dc_ins_loss)
elif cfg.TRAIN.COM_EXP == 3:
logger(i_epoch,i_iter,i_tb,writer,ext_loss,sp_loss,unsp_loss,det_loss,src_m_iu,tgt_m_iu)
# eval_net(i_epoch,i_iter,i_tb,writer,ext_model)
if (i_iter + 1) % cfg.TRAIN.PRINT_FREQ == 0:
src_pred_color, src_label_color = gen_labeled_map(pred_src_outputs,labels=src_labels)
tgt_pred_color, tgt_label_color = gen_labeled_map(pred_tgt_outputs,labels=tgt_labels)
src_det_img = draw_bbx(src_loc_preds[0].cpu(),src_conf_preds[0].cpu(), ext_src_inputs[0], restore_transform)
tgt_det_img = draw_bbx(tgt_loc_preds[0].cpu(),tgt_conf_preds[0].cpu(), ext_tgt_inputs[0], restore_transform)
show_img(i_tb, writer,src_label_color,src_pred_color,tgt_label_color,tgt_pred_color,
src_det_img, tgt_det_img)
eval_net(i_epoch,i_iter,i_tb,writer,ext_model)
# save model
snapshot_name = 'epoch_%d' % (i_epoch + 1)
torch.save(ext_model.state_dict(), os.path.join(
cfg.TRAIN.CKPT_PATH, cfg.TRAIN.EXP_NAME, snapshot_name + '_ext.pth'))
if cfg.TRAIN.COM_EXP in [2,4,5]:
torch.save(dc_model.state_dict(), os.path.join(
cfg.TRAIN.CKPT_PATH, cfg.TRAIN.EXP_NAME, 'dc.pth'))# replace old model
if cfg.TRAIN.COM_EXP in [5]:
torch.save(obc_model.state_dict(), os.path.join(
cfg.TRAIN.CKPT_PATH, cfg.TRAIN.EXP_NAME, 'obc.pth'))# replace old model