-
Notifications
You must be signed in to change notification settings - Fork 2
/
util.py
executable file
·92 lines (79 loc) · 4.22 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import faiss
import torch
import numpy as np
from tqdm import tqdm
from torch.utils.data import DataLoader
def compute_features(geoloc_dataset, model, global_features_dim, num_workers=4,
eval_batch_size=32, recall_values=[1, 5, 10, 20]):
"""Compute the features of all images within the geoloc_dataset.
Parameters
----------
geoloc_dataset : dataset_geoloc.GeolocDataset, which contains the images (queries and gallery).
model : network.Network.
global_features_dim : int, dimension of the features (e.g. 256 for AlexNet with GeM).
num_workers : int.
eval_batch_size : int.
recall_values : list of int, recalls to compute (e.g. R@1, R@5...).
Returns
-------
recalls : np.array of int, containing R@1, R@5, r@10, r@20.
recalls_pretty_str : str, pretty-printed recalls.
predictions : np.array of int, containing the first 20 predictions for each query,
with shape [queries_num, 20].
correct_bool_mat : np.array of int, with same dimension of predictions,
indicates of the prediction is correct or wrong. Its values are only [0, 1].
distances : np.array of float, with same dimension of predictions,
indicates the distance in features space from the query to its prediction.
"""
test_dataloader = DataLoader(dataset=geoloc_dataset, num_workers=num_workers,
batch_size=eval_batch_size, pin_memory=True)
model = model.eval()
with torch.no_grad():
gallery_features = np.empty((len(geoloc_dataset), global_features_dim), dtype="float32")
for inputs, indices in tqdm(test_dataloader, desc=f"Comp feats {geoloc_dataset}", ncols=120):
B, C, H, W = inputs.shape
inputs = inputs.cuda()
# Compute outputs using global features (e.g. GeM, NetVLAD...)
output = model("features_extractor", [inputs, "global"])
output = output.reshape(B, global_features_dim)
gallery_features[indices.detach().numpy(), :] = output.detach().cpu().numpy()
query_features = gallery_features[geoloc_dataset.gallery_num:]
gallery_features = gallery_features[:geoloc_dataset.gallery_num]
faiss_index = faiss.IndexFlatL2(global_features_dim)
faiss_index.add(gallery_features)
max_recall_value = max(recall_values) # Usually it's 20
distances, predictions = faiss_index.search(query_features, max_recall_value)
ground_truths = geoloc_dataset.get_positives()
recalls, recalls_str = compute_recalls(predictions, ground_truths, geoloc_dataset, recall_values)
correct_bool_mat = np.zeros((geoloc_dataset.queries_num, max_recall_value), dtype=np.int)
for query_index in range(geoloc_dataset.queries_num):
positives = set(ground_truths[query_index].tolist())
for pred_index in range(max_recall_value):
pred = predictions[query_index, pred_index]
if pred in positives:
correct_bool_mat[query_index, pred_index] = 1
return recalls, recalls_str, predictions, correct_bool_mat, distances
def compute_recalls(predictions, ground_truths, test_dataset, recall_values=[1, 5, 10, 20]):
"""Computes the recalls.
Parameters
----------
predictions : np.array of int, containing the first 20 predictions for each query,
with shape [queries_num, 20].
ground_truths : list of lists of int, containing for each query the list of its positives.
It's a list of lists because each query has different amount of positives.
test_dataset : dataset_geoloc.GeolocDataset.
recall_values : list of int, recalls to compute (e.g. R@1, R@5...).
Returns
-------
recalls : np.array of int, containing R@1, R@5, r@10, r@20.
recalls_pretty_str : str, pretty-printed recalls.
"""
recalls = np.zeros(len(recall_values))
for query_index, pred in enumerate(predictions):
for i, n in enumerate(recall_values):
if np.any(np.in1d(pred[:n], ground_truths[query_index])):
recalls[i:] += 1
break
recalls = recalls / test_dataset.queries_num * 100
recalls_pretty_str = ", ".join([f"R@{val}: {rec:.1f}" for val, rec in zip(recall_values, recalls)])
return recalls, recalls_pretty_str