forked from AlexeyAB/darknet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
darknet.py
360 lines (289 loc) · 10.8 KB
/
darknet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python3
"""
Python 3 wrapper for identifying objects in images
Running the script requires opencv-python to be installed (`pip install opencv-python`)
Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`)
Use pip3 instead of pip on some systems to be sure to install modules for python3
"""
import ctypes as ct
import random
import os
import cv2
import numpy as np
class BOX(ct.Structure):
_fields_ = (
("x", ct.c_float),
("y", ct.c_float),
("w", ct.c_float),
("h", ct.c_float),
)
FloatPtr = ct.POINTER(ct.c_float)
IntPtr = ct.POINTER(ct.c_int)
class DETECTION(ct.Structure):
_fields_ = (
("bbox", BOX),
("classes", ct.c_int),
("best_class_idx", ct.c_int),
("prob", FloatPtr),
("mask", FloatPtr),
("objectness", ct.c_float),
("sort_class", ct.c_int),
("uc", FloatPtr),
("points", ct.c_int),
("embeddings", FloatPtr),
("embedding_size", ct.c_int),
("sim", ct.c_float),
("track_id", ct.c_int),
)
DETECTIONPtr = ct.POINTER(DETECTION)
class DETNUMPAIR(ct.Structure):
_fields_ = (
("num", ct.c_int),
("dets", DETECTIONPtr),
)
DETNUMPAIRPtr = ct.POINTER(DETNUMPAIR)
class IMAGE(ct.Structure):
_fields_ = (
("w", ct.c_int),
("h", ct.c_int),
("c", ct.c_int),
("data", FloatPtr),
)
class METADATA(ct.Structure):
_fields_ = (
("classes", ct.c_int),
("names", ct.POINTER(ct.c_char_p)),
)
def network_width(net):
return lib.network_width(net)
def network_height(net):
return lib.network_height(net)
def bbox2points(bbox):
"""
From bounding box yolo format
to corner points cv2 rectangle
"""
x, y, w, h = bbox
xmin = round(x - (w / 2))
xmax = round(x + (w / 2))
ymin = round(y - (h / 2))
ymax = round(y + (h / 2))
return xmin, ymin, xmax, ymax
def class_colors(names):
"""
Create a dict with one random BGR color for each
class name
"""
return {name: (
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255)) for name in names}
def load_network(config_file, data_file, weights, batch_size=1):
"""
load model description and weights from config files
args:
config_file (str): path to .cfg model file
data_file (str): path to .data model file
weights (str): path to weights
returns:
network: trained model
class_names
class_colors
"""
network = load_net_custom(
config_file.encode("ascii"),
weights.encode("ascii"), 0, batch_size)
metadata = load_meta(data_file.encode("ascii"))
class_names = [metadata.names[i].decode("ascii") for i in range(metadata.classes)]
colors = class_colors(class_names)
return network, class_names, colors
def print_detections(detections, coordinates=False):
print("\nObjects:")
for label, confidence, bbox in detections:
x, y, w, h = bbox
if coordinates:
print("{}: {}% (left_x: {:.0f} top_y: {:.0f} width: {:.0f} height: {:.0f})".format(label, confidence, x, y, w, h))
else:
print("{}: {}%".format(label, confidence))
def draw_boxes(detections, image, colors):
import cv2
for label, confidence, bbox in detections:
left, top, right, bottom = bbox2points(bbox)
cv2.rectangle(image, (left, top), (right, bottom), colors[label], 1)
cv2.putText(image, "{} [{:.2f}]".format(label, float(confidence)),
(left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
colors[label], 2)
return image
def decode_detection(detections):
decoded = []
for label, confidence, bbox in detections:
confidence = str(round(confidence * 100, 2))
decoded.append((str(label), confidence, bbox))
return decoded
# https://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/
# Malisiewicz et al.
def non_max_suppression_fast(detections, overlap_thresh):
boxes = []
for detection in detections:
_, _, _, (x, y, w, h) = detection
x1 = x - w / 2
y1 = y - h / 2
x2 = x + w / 2
y2 = y + h / 2
boxes.append(np.array([x1, y1, x2, y2]))
boxes_array = np.array(boxes)
# initialize the list of picked indexes
pick = []
# grab the coordinates of the bounding boxes
x1 = boxes_array[:, 0]
y1 = boxes_array[:, 1]
x2 = boxes_array[:, 2]
y2 = boxes_array[:, 3]
# compute the area of the bounding boxes and sort the bounding
# boxes by the bottom-right y-coordinate of the bounding box
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
# keep looping while some indexes still remain in the indexes
# list
while len(idxs) > 0:
# grab the last index in the indexes list and add the
# index value to the list of picked indexes
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
# find the largest (x, y) coordinates for the start of
# the bounding box and the smallest (x, y) coordinates
# for the end of the bounding box
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
# compute the width and height of the bounding box
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
# compute the ratio of overlap
overlap = (w * h) / area[idxs[:last]]
# delete all indexes from the index list that have
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlap_thresh)[0])))
# return only the bounding boxes that were picked using the
# integer data type
return [detections[i] for i in pick]
def remove_negatives(detections, class_names, num):
"""
Remove all classes with 0% confidence within the detection
"""
predictions = []
for j in range(num):
for idx, name in enumerate(class_names):
if detections[j].prob[idx] > 0:
bbox = detections[j].bbox
bbox = (bbox.x, bbox.y, bbox.w, bbox.h)
predictions.append((name, detections[j].prob[idx], (bbox)))
return predictions
def remove_negatives_faster(detections, class_names, num):
"""
Faster version of remove_negatives (very useful when using yolo9000)
"""
predictions = []
for j in range(num):
if detections[j].best_class_idx == -1:
continue
name = class_names[detections[j].best_class_idx]
bbox = detections[j].bbox
bbox = (bbox.x, bbox.y, bbox.w, bbox.h)
predictions.append((name, detections[j].prob[detections[j].best_class_idx], bbox))
return predictions
def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45):
"""
Returns a list with highest confidence class and their bbox
"""
pnum = ct.pointer(ct.c_int(0))
predict_image(network, image)
detections = get_network_boxes(network, image.w, image.h,
thresh, hier_thresh, None, 0, pnum, 0)
num = pnum[0]
if nms:
do_nms_sort(detections, num, len(class_names), nms)
predictions = remove_negatives(detections, class_names, num)
predictions = decode_detection(predictions)
free_detections(detections, num)
return sorted(predictions, key=lambda x: x[1])
if os.name == "posix":
cwd = os.path.dirname(__file__)
lib = ct.CDLL(cwd + "/libdarknet.so", ct.RTLD_GLOBAL)
elif os.name == "nt":
cwd = os.path.dirname(__file__)
os.environ["PATH"] = os.path.pathsep.join((cwd, os.environ["PATH"]))
lib = ct.CDLL("darknet.dll", winmode = 0, mode = ct.RTLD_GLOBAL)
else:
lib = None # Intellisense
print("Unsupported OS")
exit()
lib.network_width.argtypes = (ct.c_void_p,)
lib.network_width.restype = ct.c_int
lib.network_height.argtypes = (ct.c_void_p,)
lib.network_height.restype = ct.c_int
copy_image_from_bytes = lib.copy_image_from_bytes
copy_image_from_bytes.argtypes = (IMAGE, ct.c_char_p)
predict = lib.network_predict_ptr
predict.argtypes = (ct.c_void_p, FloatPtr)
predict.restype = FloatPtr
set_gpu = lib.cuda_set_device
init_cpu = lib.init_cpu
make_image = lib.make_image
make_image.argtypes = (ct.c_int, ct.c_int, ct.c_int)
make_image.restype = IMAGE
get_network_boxes = lib.get_network_boxes
get_network_boxes.argtypes = (ct.c_void_p, ct.c_int, ct.c_int, ct.c_float, ct.c_float, IntPtr, ct.c_int, IntPtr,
ct.c_int)
get_network_boxes.restype = DETECTIONPtr
make_network_boxes = lib.make_network_boxes
make_network_boxes.argtypes = (ct.c_void_p,)
make_network_boxes.restype = DETECTIONPtr
free_detections = lib.free_detections
free_detections.argtypes = (DETECTIONPtr, ct.c_int)
free_batch_detections = lib.free_batch_detections
free_batch_detections.argtypes = (DETNUMPAIRPtr, ct.c_int)
free_ptrs = lib.free_ptrs
free_ptrs.argtypes = (ct.POINTER(ct.c_void_p), ct.c_int)
network_predict = lib.network_predict_ptr
network_predict.argtypes = (ct.c_void_p, FloatPtr)
reset_rnn = lib.reset_rnn
reset_rnn.argtypes = (ct.c_void_p,)
load_net = lib.load_network
load_net.argtypes = (ct.c_char_p, ct.c_char_p, ct.c_int)
load_net.restype = ct.c_void_p
load_net_custom = lib.load_network_custom
load_net_custom.argtypes = (ct.c_char_p, ct.c_char_p, ct.c_int, ct.c_int)
load_net_custom.restype = ct.c_void_p
free_network_ptr = lib.free_network_ptr
free_network_ptr.argtypes = (ct.c_void_p,)
free_network_ptr.restype = ct.c_void_p
do_nms_obj = lib.do_nms_obj
do_nms_obj.argtypes = (DETECTIONPtr, ct.c_int, ct.c_int, ct.c_float)
do_nms_sort = lib.do_nms_sort
do_nms_sort.argtypes = (DETECTIONPtr, ct.c_int, ct.c_int, ct.c_float)
free_image = lib.free_image
free_image.argtypes = (IMAGE,)
letterbox_image = lib.letterbox_image
letterbox_image.argtypes = (IMAGE, ct.c_int, ct.c_int)
letterbox_image.restype = IMAGE
load_meta = lib.get_metadata
lib.get_metadata.argtypes = (ct.c_char_p,)
lib.get_metadata.restype = METADATA
load_image = lib.load_image_color
load_image.argtypes = (ct.c_char_p, ct.c_int, ct.c_int)
load_image.restype = IMAGE
rgbgr_image = lib.rgbgr_image
rgbgr_image.argtypes = (IMAGE,)
predict_image = lib.network_predict_image
predict_image.argtypes = (ct.c_void_p, IMAGE)
predict_image.restype = FloatPtr
predict_image_letterbox = lib.network_predict_image_letterbox
predict_image_letterbox.argtypes = (ct.c_void_p, IMAGE)
predict_image_letterbox.restype = FloatPtr
network_predict_batch = lib.network_predict_batch
network_predict_batch.argtypes = (ct.c_void_p, IMAGE, ct.c_int, ct.c_int, ct.c_int,
ct.c_float, ct.c_float, IntPtr, ct.c_int, ct.c_int)
network_predict_batch.restype = DETNUMPAIRPtr