forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
callbacks.py
256 lines (217 loc) · 9.08 KB
/
callbacks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common modules for callbacks."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import os
from typing import Any, List, MutableMapping, Text
from absl import logging
import tensorflow as tf
from official.modeling import optimization
from official.utils.misc import keras_utils
def get_callbacks(
model_checkpoint: bool = True,
include_tensorboard: bool = True,
time_history: bool = True,
track_lr: bool = True,
write_model_weights: bool = True,
apply_moving_average: bool = False,
initial_step: int = 0,
batch_size: int = 0,
log_steps: int = 0,
model_dir: str = None,
backup_and_restore: bool = False) -> List[tf.keras.callbacks.Callback]:
"""Get all callbacks."""
model_dir = model_dir or ''
callbacks = []
if model_checkpoint:
ckpt_full_path = os.path.join(model_dir, 'model.ckpt-{epoch:04d}')
callbacks.append(
tf.keras.callbacks.ModelCheckpoint(
ckpt_full_path, save_weights_only=True, verbose=1))
if backup_and_restore:
backup_dir = os.path.join(model_dir, 'tmp')
callbacks.append(
tf.keras.callbacks.experimental.BackupAndRestore(backup_dir))
if include_tensorboard:
callbacks.append(
CustomTensorBoard(
log_dir=model_dir,
track_lr=track_lr,
initial_step=initial_step,
write_images=write_model_weights))
if time_history:
callbacks.append(
keras_utils.TimeHistory(
batch_size,
log_steps,
logdir=model_dir if include_tensorboard else None))
if apply_moving_average:
# Save moving average model to a different file so that
# we can resume training from a checkpoint
ckpt_full_path = os.path.join(model_dir, 'average',
'model.ckpt-{epoch:04d}')
callbacks.append(
AverageModelCheckpoint(
update_weights=False,
filepath=ckpt_full_path,
save_weights_only=True,
verbose=1))
callbacks.append(MovingAverageCallback())
return callbacks
def get_scalar_from_tensor(t: tf.Tensor) -> int:
"""Utility function to convert a Tensor to a scalar."""
t = tf.keras.backend.get_value(t)
if callable(t):
return t()
else:
return t
class CustomTensorBoard(tf.keras.callbacks.TensorBoard):
"""A customized TensorBoard callback that tracks additional datapoints.
Metrics tracked:
- Global learning rate
Attributes:
log_dir: the path of the directory where to save the log files to be parsed
by TensorBoard.
track_lr: `bool`, whether or not to track the global learning rate.
initial_step: the initial step, used for preemption recovery.
**kwargs: Additional arguments for backwards compatibility. Possible key is
`period`.
"""
# TODO(b/146499062): track params, flops, log lr, l2 loss,
# classification loss
def __init__(self,
log_dir: str,
track_lr: bool = False,
initial_step: int = 0,
**kwargs):
super(CustomTensorBoard, self).__init__(log_dir=log_dir, **kwargs)
self.step = initial_step
self._track_lr = track_lr
def on_batch_begin(self,
epoch: int,
logs: MutableMapping[str, Any] = None) -> None:
self.step += 1
if logs is None:
logs = {}
logs.update(self._calculate_metrics())
super(CustomTensorBoard, self).on_batch_begin(epoch, logs)
def on_epoch_begin(self,
epoch: int,
logs: MutableMapping[str, Any] = None) -> None:
if logs is None:
logs = {}
metrics = self._calculate_metrics()
logs.update(metrics)
for k, v in metrics.items():
logging.info('Current %s: %f', k, v)
super(CustomTensorBoard, self).on_epoch_begin(epoch, logs)
def on_epoch_end(self,
epoch: int,
logs: MutableMapping[str, Any] = None) -> None:
if logs is None:
logs = {}
metrics = self._calculate_metrics()
logs.update(metrics)
super(CustomTensorBoard, self).on_epoch_end(epoch, logs)
def _calculate_metrics(self) -> MutableMapping[str, Any]:
logs = {}
# TODO(b/149030439): disable LR reporting.
# if self._track_lr:
# logs['learning_rate'] = self._calculate_lr()
return logs
def _calculate_lr(self) -> int:
"""Calculates the learning rate given the current step."""
return get_scalar_from_tensor(
self._get_base_optimizer()._decayed_lr(var_dtype=tf.float32)) # pylint:disable=protected-access
def _get_base_optimizer(self) -> tf.keras.optimizers.Optimizer:
"""Get the base optimizer used by the current model."""
optimizer = self.model.optimizer
# The optimizer might be wrapped by another class, so unwrap it
while hasattr(optimizer, '_optimizer'):
optimizer = optimizer._optimizer # pylint:disable=protected-access
return optimizer
class MovingAverageCallback(tf.keras.callbacks.Callback):
"""A Callback to be used with a `ExponentialMovingAverage` optimizer.
Applies moving average weights to the model during validation time to test
and predict on the averaged weights rather than the current model weights.
Once training is complete, the model weights will be overwritten with the
averaged weights (by default).
Attributes:
overwrite_weights_on_train_end: Whether to overwrite the current model
weights with the averaged weights from the moving average optimizer.
**kwargs: Any additional callback arguments.
"""
def __init__(self, overwrite_weights_on_train_end: bool = False, **kwargs):
super(MovingAverageCallback, self).__init__(**kwargs)
self.overwrite_weights_on_train_end = overwrite_weights_on_train_end
def set_model(self, model: tf.keras.Model):
super(MovingAverageCallback, self).set_model(model)
assert isinstance(self.model.optimizer,
optimization.ExponentialMovingAverage)
self.model.optimizer.shadow_copy(self.model)
def on_test_begin(self, logs: MutableMapping[Text, Any] = None):
self.model.optimizer.swap_weights()
def on_test_end(self, logs: MutableMapping[Text, Any] = None):
self.model.optimizer.swap_weights()
def on_train_end(self, logs: MutableMapping[Text, Any] = None):
if self.overwrite_weights_on_train_end:
self.model.optimizer.assign_average_vars(self.model.variables)
class AverageModelCheckpoint(tf.keras.callbacks.ModelCheckpoint):
"""Saves and, optionally, assigns the averaged weights.
Taken from tfa.callbacks.AverageModelCheckpoint.
Attributes:
update_weights: If True, assign the moving average weights to the model, and
save them. If False, keep the old non-averaged weights, but the saved
model uses the average weights. See `tf.keras.callbacks.ModelCheckpoint`
for the other args.
"""
def __init__(self,
update_weights: bool,
filepath: str,
monitor: str = 'val_loss',
verbose: int = 0,
save_best_only: bool = False,
save_weights_only: bool = False,
mode: str = 'auto',
save_freq: str = 'epoch',
**kwargs):
self.update_weights = update_weights
super().__init__(filepath, monitor, verbose, save_best_only,
save_weights_only, mode, save_freq, **kwargs)
def set_model(self, model):
if not isinstance(model.optimizer, optimization.ExponentialMovingAverage):
raise TypeError('AverageModelCheckpoint is only used when training'
'with MovingAverage')
return super().set_model(model)
def _save_model(self, epoch, logs):
assert isinstance(self.model.optimizer,
optimization.ExponentialMovingAverage)
if self.update_weights:
self.model.optimizer.assign_average_vars(self.model.variables)
return super()._save_model(epoch, logs)
else:
# Note: `model.get_weights()` gives us the weights (non-ref)
# whereas `model.variables` returns references to the variables.
non_avg_weights = self.model.get_weights()
self.model.optimizer.assign_average_vars(self.model.variables)
# result is currently None, since `super._save_model` doesn't
# return anything, but this may change in the future.
result = super()._save_model(epoch, logs)
self.model.set_weights(non_avg_weights)
return result