-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathadmm.m
105 lines (79 loc) · 2.14 KB
/
admm.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
function h = admm(XO)
A = XO;
[m, n] = size(A);
g2_max = norm(A(:),inf);
g3_max = norm(A);
g2 = 0.15*g2_max;
g3 = 0.15*g3_max;
% ADMM
MAX_ITER = 200;
ABSTOL = 1e-4;
RELTOL = 1e-2;
lambda = 1;
rho = 1/lambda;
N = 3;
X_1 = zeros(m,n);
X_2 = zeros(m,n);
X_3 = zeros(m,n);
z = zeros(m,N*n);
U = zeros(m,n);
fprintf('\n%3s\t%10s\t%10s\n', 'iter', ...
'r norm', 's norm');
timerval = tic;
for k = 1:MAX_ITER
B = avg(X_1, X_2, X_3) - A./N + U;
% x-update
X_1 = (1/(1+lambda))*(X_1 - B);
X_2 = prox_l1(X_2 - B, lambda*g2);
X_3 = prox_matrix(X_3 - B, lambda*g3, @prox_l1);
% (for termination checks only)
x = [X_1 X_2 X_3];
zold = z;
z = x + repmat(-avg(X_1, X_2, X_3) + A./N, 1, N);
% u-update
U = B;
% diagnostics, reporting, termination checks
%h.objval(k) = objective(X_1, g2, X_2, g3, X_3);
h.r_norm(k) = norm(x - z,'fro');
h.s_norm(k) = norm(-rho*(z - zold),'fro');
h.eps_pri(k) = sqrt(m*n*N)*ABSTOL + RELTOL*max(norm(x,'fro'), norm(-z,'fro'));
h.eps_dual(k) = sqrt(m*n*N)*ABSTOL + RELTOL*sqrt(N)*norm(rho*U,'fro');
fprintf('%4d\t%10.4f\t%10.4f\t\n', k, ...
h.r_norm(k), h.s_norm(k));
if h.r_norm(k) < h.eps_pri(k) && h.s_norm(k) < h.eps_dual(k)
break;
end
end
h.admm_toc = toc(timerval);
h.admm_iter = k;
h.X1_admm = X_1;
h.X2_admm = X_2;
h.X3_admm = X_3;
fprintf('Time taken = %f\n', h.admm_toc);
end
function x = avg(varargin)
N = length(varargin);
x = 0;
for k = 1:N
x = x + varargin{k};
end
x = x/N;
end
function p = objective(X_1, g_2, X_2, g_3, X_3)
p = norm(X_1,'fro').^2 + g_2*norm(X_2(:),1) + g_3*norm(svd(X_3),1);
end
function x = prox_l1(v, lambda)
% PROX_L1 The proximal operator of the l1 norm.
%
% prox_l1(v,lambda) is the proximal operator of the l1 norm
% with parameter lambda.
x = max(0, v - lambda) - max(0, -v - lambda);
end
function x = prox_matrix(v, lambda, prox_f)
% PROX_MATRIX The proximal operator of a matrix function.
R = chol(transpose(v) * v);
Q = v* inv(R);
[UR S V] = svd(R, 'econ');
U = Q * UR;
x = U*diag(prox_f(diag(S), lambda))*V';
end