forked from MATPOWER/matpower
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathipopt_options.m
1760 lines (1741 loc) · 85.8 KB
/
ipopt_options.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
function opt = ipopt_options(overrides, mpopt)
%IPOPT_OPTIONS Sets options for IPOPT.
%
% OPT = IPOPT_OPTIONS
% OPT = IPOPT_OPTIONS(OVERRIDES)
% OPT = IPOPT_OPTIONS(OVERRIDES, FNAME)
% OPT = IPOPT_OPTIONS(OVERRIDES, MPOPT)
%
% Sets the values for the options.ipopt struct normally passed to
% IPOPT.
%
% Please note that if there is a file named 'ipopt.opt' in your
% current working directory, it will override any options passed
% to the IPOPT MEX file, including any options returned by this
% function.
%
% Inputs are all optional, second argument must be either a string
% (FNAME) or a struct (MPOPT):
%
% OVERRIDES - struct containing values to override the defaults
% FNAME - name of user-supplied function called after default
% options are set to modify them. Calling syntax is:
% MODIFIED_OPT = FNAME(DEFAULT_OPT);
% MPOPT - MATPOWER options struct, uses the following fields:
% opf.violation - used to set opt.constr_viol_tol
% verbose - used to opt.print_level
% ipopt.opts - struct containing values to use as OVERRIDES
% ipopt.opt_fname - name of user-supplied function used as FNAME,
% except with calling syntax:
% MODIFIED_OPT = FNAME(DEFAULT_OPT, MPOPT);
% ipopt.opt - numbered user option function, if and only if
% ipopt.opt_fname is empty and ipopt.opt is non-zero, the value
% of ipopt.opt_fname is generated by appending ipopt.opt to
% 'ipopt_user_options_' (for backward compatibility with old
% MATPOWER option IPOPT_OPT).
%
% Output is an options.ipopt struct to pass to IPOPT.
%
% There are multiple ways of providing values to override the default
% options. Their precedence and order of application are as follows:
%
% With inputs OVERRIDES and FNAME
% 1. FNAME is called
% 2. OVERRIDES are applied
% With inputs OVERRIDES and MPOPT
% 1. FNAME (from ipopt.opt_fname or ipopt.opt) is called
% 2. ipopt.opts (if not empty) are applied
% 3. OVERRIDES are applied
%
% Example:
%
% If ipopt.opt = 3, then after setting the default IPOPT options,
% IPOPT_OPTIONS will execute the following user-defined function
% to allow option overrides:
%
% opt = ipopt_user_options_3(opt, mpopt);
%
% The contents of ipopt_user_options_3.m, could be something like:
%
% function opt = ipopt_user_options_3(opt, mpopt)
% opt.nlp_scaling_method = 'none';
% opt.max_iter = 500;
% opt.derivative_test = 'first-order';
%
% See the options reference section in the IPOPT documentation for
% details on the available options.
%
% http://www.coin-or.org/Ipopt/documentation/
%
% See also IPOPT, MPOPTION.
% MATPOWER
% Copyright (c) 2010-2016, Power Systems Engineering Research Center (PSERC)
% by Ray Zimmerman, PSERC Cornell
%
% This file is part of MATPOWER.
% Covered by the 3-clause BSD License (see LICENSE file for details).
% See http://www.pserc.cornell.edu/matpower/ for more info.
%%----- initialization and arg handling -----
%% defaults
verbose = 2;
fname = '';
%% second argument
if nargin > 1 && ~isempty(mpopt)
if ischar(mpopt) %% 2nd arg is FNAME (string)
fname = mpopt;
have_mpopt = 0;
else %% 2nd arg is MPOPT (MATPOWER options struct)
have_mpopt = 1;
verbose = mpopt.verbose;
if isfield(mpopt.ipopt, 'opt_fname') && ~isempty(mpopt.ipopt.opt_fname)
fname = mpopt.ipopt.opt_fname;
elseif mpopt.ipopt.opt
fname = sprintf('ipopt_user_options_%d', mpopt.ipopt.opt);
end
end
else
have_mpopt = 0;
end
%%----- set default options for IPOPT -----
%% printing
if verbose
opt.print_level = min(12, verbose*2+1);
else
opt.print_level = 0;
end
%% convergence
opt.tol = 1e-8; %% default 1e-8
opt.max_iter = 250; %% default 3000
opt.dual_inf_tol = 0.1; %% default 1
if have_mpopt
opt.constr_viol_tol = mpopt.opf.violation; %% default 1e-4
opt.acceptable_constr_viol_tol = mpopt.opf.violation*100; %% default 1e-2
end
opt.compl_inf_tol = 1e-5; %% default 1e-4
opt.acceptable_tol = 1e-8; %% default 1e-6
% opt.acceptable_iter = 15; %% default 15
% opt.acceptable_dual_inf_tol = 1e+10; %% default 1e+10
opt.acceptable_compl_inf_tol = 1e-3; %% default 1e-2
% opt.acceptable_obj_change_tol = 1e+20; %% default 1e+20
% opt.diverging_iterates_tol = 1e+20; %% default 1e+20
%% NLP scaling
% opt.nlp_scaling_method = 'none'; %% default 'gradient-based'
%% NLP
% opt.fixed_variable_treatment = 'make_constraint'; %% default 'make_parameter'
% opt.honor_original_bounds = 'no'; %% default 'yes'
% opt.check_derivatives_for_naninf = 'yes'; %% default 'no'
%% initialization
% opt.least_square_init_primal = 'yes'; %% default 'no'
% opt.least_square_init_duals = 'yes'; %% default 'no'
%% barrier parameter update
opt.mu_strategy = 'adaptive'; %% default 'monotone'
%% linear solver
% opt.linear_solver = 'ma27';
% opt.linear_solver = 'ma57';
% opt.linear_solver = 'pardiso';
% opt.linear_solver = 'wsmp';
% opt.linear_solver = 'mumps'; %% default 'mumps'
% opt.linear_solver = 'custom';
% opt.linear_scaling_on_demand = 'no'; %% default 'yes'
%% step calculation
% opt.mehrotra_algorithm = 'yes'; %% default 'no'
% opt.fast_step_computation = 'yes'; %% default 'no'
%% restoration phase
% opt.expect_infeasible_problem = 'yes'; %% default 'no'
%% derivative checker
% opt.derivative_test = 'second-order'; %% default 'none'
%% hessian approximation
% opt.hessian_approximation = 'limited-memory'; %% default 'exact'
% ma57 options
%opt.ma57_pre_alloc = 3;
%opt.ma57_pivot_order = 4;
%%----- call user function to modify defaults -----
if ~isempty(fname)
if have_mpopt
opt = feval(fname, opt, mpopt);
else
opt = feval(fname, opt);
end
end
%%----- apply overrides -----
if have_mpopt && isfield(mpopt.ipopt, 'opts') && ~isempty(mpopt.ipopt.opts)
opt = nested_struct_copy(opt, mpopt.ipopt.opts);
end
if nargin > 0 && ~isempty(overrides)
opt = nested_struct_copy(opt, overrides);
end
%-------------------------- Options Documentation --------------------------
% (as printed by IPOPT 3.8)
% ### Output ###
%
% print_level 0 <= ( 5) <= 12
% Output verbosity level.
% Sets the default verbosity level for console output. The larger this
% value the more detailed is the output.
%
% output_file ("")
% File name of desired output file (leave unset for no file output).
% NOTE: This option only works when read from the ipopt.opt options file!
% An output file with this name will be written (leave unset for no file
% output). The verbosity level is by default set to "print_level", but can
% be overridden with "file_print_level". The file name is changed to use
% only small letters.
% Possible values:
% - * [Any acceptable standard file name]
%
% file_print_level 0 <= ( 5) <= 12
% Verbosity level for output file.
% NOTE: This option only works when read from the ipopt.opt options file!
% Determines the verbosity level for the file specified by "output_file".
% By default it is the same as "print_level".
%
% print_user_options ("no")
% Print all options set by the user.
% If selected, the algorithm will print the list of all options set by the
% user including their values and whether they have been used. In some
% cases this information might be incorrect, due to the internal program
% flow.
% Possible values:
% - no [don't print options]
% - yes [print options]
%
% print_options_documentation ("no")
% Switch to print all algorithmic options.
% If selected, the algorithm will print the list of all available
% algorithmic options with some documentation before solving the
% optimization problem.
% Possible values:
% - no [don't print list]
% - yes [print list]
%
% print_timing_statistics ("no")
% Switch to print timing statistics.
% If selected, the program will print the CPU usage (user time) for
% selected tasks.
% Possible values:
% - no [don't print statistics]
% - yes [print all timing statistics]
%
% option_file_name ("")
% File name of options file (to overwrite default).
% By default, the name of the Ipopt options file is "ipopt.opt" - or
% something else if specified in the IpoptApplication::Initialize call. If
% this option is set by SetStringValue BEFORE the options file is read, it
% specifies the name of the options file. It does not make any sense to
% specify this option within the options file.
% Possible values:
% - * [Any acceptable standard file name]
%
% replace_bounds ("no")
% Indicates if all variable bounds should be replaced by inequality
% constraints
% This option must be set for the inexact algorithm
% Possible values:
% - no [leave bounds on variables]
% - yes [replace variable bounds by inequality
% constraints]
%
% skip_finalize_solution_call ("no")
% Indicates if call to NLP::FinalizeSolution after optimization should be
% suppressed
% In some Ipopt applications, the user might want to call the
% FinalizeSolution method separately. Setting this option to "yes" will
% cause the IpoptApplication object to suppress the default call to that
% method.
% Possible values:
% - no [call FinalizeSolution]
% - yes [do not call FinalizeSolution]
%
% print_info_string ("no")
% Enables printing of additional info string at end of iteration output.
% This string contains some insider information about the current iteration.
% Possible values:
% - no [don't print string]
% - yes [print string at end of each iteration output]
%
%
%
% ### Convergence ###
%
% tol 0 < ( 1e-08) < +inf
% Desired convergence tolerance (relative).
% Determines the convergence tolerance for the algorithm. The algorithm
% terminates successfully, if the (scaled) NLP error becomes smaller than
% this value, and if the (absolute) criteria according to "dual_inf_tol",
% "primal_inf_tol", and "cmpl_inf_tol" are met. (This is epsilon_tol in
% Eqn. (6) in implementation paper). See also "acceptable_tol" as a second
% termination criterion. Note, some other algorithmic features also use
% this quantity to determine thresholds etc.
%
% s_max 0 < ( 100) < +inf
% Scaling threshold for the NLP error.
% (See paragraph after Eqn. (6) in the implementation paper.)
%
% max_iter 0 <= ( 3000) < +inf
% Maximum number of iterations.
% The algorithm terminates with an error message if the number of
% iterations exceeded this number.
%
% max_cpu_time 0 < ( 1e+06) < +inf
% Maximum number of CPU seconds.
% A limit on CPU seconds that Ipopt can use to solve one problem. If
% during the convergence check this limit is exceeded, Ipopt will terminate
% with a corresponding error message.
%
% dual_inf_tol 0 < ( 1) < +inf
% Desired threshold for the dual infeasibility.
% Absolute tolerance on the dual infeasibility. Successful termination
% requires that the max-norm of the (unscaled) dual infeasibility is less
% than this threshold.
%
% constr_viol_tol 0 < ( 0.0001) < +inf
% Desired threshold for the constraint violation.
% Absolute tolerance on the constraint violation. Successful termination
% requires that the max-norm of the (unscaled) constraint violation is less
% than this threshold.
%
% compl_inf_tol 0 < ( 0.0001) < +inf
% Desired threshold for the complementarity conditions.
% Absolute tolerance on the complementarity. Successful termination
% requires that the max-norm of the (unscaled) complementarity is less than
% this threshold.
%
% acceptable_tol 0 < ( 1e-06) < +inf
% "Acceptable" convergence tolerance (relative).
% Determines which (scaled) overall optimality error is considered to be
% "acceptable." There are two levels of termination criteria. If the usual
% "desired" tolerances (see tol, dual_inf_tol etc) are satisfied at an
% iteration, the algorithm immediately terminates with a success message.
% On the other hand, if the algorithm encounters "acceptable_iter" many
% iterations in a row that are considered "acceptable", it will terminate
% before the desired convergence tolerance is met. This is useful in cases
% where the algorithm might not be able to achieve the "desired" level of
% accuracy.
%
% acceptable_iter 0 <= ( 15) < +inf
% Number of "acceptable" iterates before triggering termination.
% If the algorithm encounters this many successive "acceptable" iterates
% (see "acceptable_tol"), it terminates, assuming that the problem has been
% solved to best possible accuracy given round-off. If it is set to zero,
% this heuristic is disabled.
%
% acceptable_dual_inf_tol 0 < ( 1e+10) < +inf
% "Acceptance" threshold for the dual infeasibility.
% Absolute tolerance on the dual infeasibility. "Acceptable" termination
% requires that the (max-norm of the unscaled) dual infeasibility is less
% than this threshold; see also acceptable_tol.
%
% acceptable_constr_viol_tol 0 < ( 0.01) < +inf
% "Acceptance" threshold for the constraint violation.
% Absolute tolerance on the constraint violation. "Acceptable" termination
% requires that the max-norm of the (unscaled) constraint violation is less
% than this threshold; see also acceptable_tol.
%
% acceptable_compl_inf_tol 0 < ( 0.01) < +inf
% "Acceptance" threshold for the complementarity conditions.
% Absolute tolerance on the complementarity. "Acceptable" termination
% requires that the max-norm of the (unscaled) complementarity is less than
% this threshold; see also acceptable_tol.
%
% acceptable_obj_change_tol 0 <= ( 1e+20) < +inf
% "Acceptance" stopping criterion based on objective function change.
% If the relative change of the objective function (scaled by
% Max(1,|f(x)|)) is less than this value, this part of the acceptable
% tolerance termination is satisfied; see also acceptable_tol. This is
% useful for the quasi-Newton option, which has trouble to bring down the
% dual infeasibility.
%
% diverging_iterates_tol 0 < ( 1e+20) < +inf
% Threshold for maximal value of primal iterates.
% If any component of the primal iterates exceeded this value (in absolute
% terms), the optimization is aborted with the exit message that the
% iterates seem to be diverging.
%
%
%
% ### NLP Scaling ###
%
% nlp_scaling_method ("gradient-based")
% Select the technique used for scaling the NLP.
% Selects the technique used for scaling the problem internally before it
% is solved. For user-scaling, the parameters come from the NLP. If you are
% using AMPL, they can be specified through suffixes ("scaling_factor")
% Possible values:
% - none [no problem scaling will be performed]
% - user-scaling [scaling parameters will come from the user]
% - gradient-based [scale the problem so the maximum gradient at
% the starting point is scaling_max_gradient]
% - equilibration-based [scale the problem so that first derivatives are
% of order 1 at random points (only available
% with MC19)]
%
% obj_scaling_factor -inf < ( 1) < +inf
% Scaling factor for the objective function.
% This option sets a scaling factor for the objective function. The scaling
% is seen internally by Ipopt but the unscaled objective is reported in the
% console output. If additional scaling parameters are computed (e.g.
% user-scaling or gradient-based), both factors are multiplied. If this
% value is chosen to be negative, Ipopt will maximize the objective
% function instead of minimizing it.
%
% nlp_scaling_max_gradient 0 < ( 100) < +inf
% Maximum gradient after NLP scaling.
% This is the gradient scaling cut-off. If the maximum gradient is above
% this value, then gradient based scaling will be performed. Scaling
% parameters are calculated to scale the maximum gradient back to this
% value. (This is g_max in Section 3.8 of the implementation paper.) Note:
% This option is only used if "nlp_scaling_method" is chosen as
% "gradient-based".
%
% nlp_scaling_obj_target_gradient 0 <= ( 0) < +inf
% Target value for objective function gradient size.
% If a positive number is chosen, the scaling factor the objective function
% is computed so that the gradient has the max norm of the given size at
% the starting point. This overrides nlp_scaling_max_gradient for the
% objective function.
%
% nlp_scaling_constr_target_gradient 0 <= ( 0) < +inf
% Target value for constraint function gradient size.
% If a positive number is chosen, the scaling factor the constraint
% functions is computed so that the gradient has the max norm of the given
% size at the starting point. This overrides nlp_scaling_max_gradient for
% the constraint functions.
%
%
%
% ### NLP ###
%
% nlp_lower_bound_inf -inf < ( -1e+19) < +inf
% any bound less or equal this value will be considered -inf (i.e. not lower
% bounded).
%
% nlp_upper_bound_inf -inf < ( 1e+19) < +inf
% any bound greater or this value will be considered +inf (i.e. not upper
% bounded).
%
% fixed_variable_treatment ("make_parameter")
% Determines how fixed variables should be handled.
% The main difference between those options is that the starting point in
% the "make_constraint" case still has the fixed variables at their given
% values, whereas in the case "make_parameter" the functions are always
% evaluated with the fixed values for those variables. Also, for
% "relax_bounds", the fixing bound constraints are relaxed (according to"
% bound_relax_factor"). For both "make_constraints" and "relax_bounds",
% bound multipliers are computed for the fixed variables.
% Possible values:
% - make_parameter [Remove fixed variable from optimization
% variables]
% - make_constraint [Add equality constraints fixing variables]
% - relax_bounds [Relax fixing bound constraints]
%
% dependency_detector ("none")
% Indicates which linear solver should be used to detect linearly dependent
% equality constraints.
% The default and available choices depend on how Ipopt has been compiled.
% This is experimental and does not work well.
% Possible values:
% - none [don't check; no extra work at beginning]
% - mumps [use MUMPS]
% - wsmp [use WSMP]
% - ma28 [use MA28]
%
% dependency_detection_with_rhs ("no")
% Indicates if the right hand sides of the constraints should be considered
% during dependency detection
% Possible values:
% - no [only look at gradients]
% - yes [also consider right hand side]
%
% num_linear_variables 0 <= ( 0) < +inf
% Number of linear variables
% When the Hessian is approximated, it is assumed that the first
% num_linear_variables variables are linear. The Hessian is then not
% approximated in this space. If the get_number_of_nonlinear_variables
% method in the TNLP is implemented, this option is ignored.
%
% kappa_d 0 <= ( 1e-05) < +inf
% Weight for linear damping term (to handle one-sided bounds).
% (see Section 3.7 in implementation paper.)
%
% bound_relax_factor 0 <= ( 1e-08) < +inf
% Factor for initial relaxation of the bounds.
% Before start of the optimization, the bounds given by the user are
% relaxed. This option sets the factor for this relaxation. If it is set
% to zero, then then bounds relaxation is disabled. (See Eqn.(35) in
% implementation paper.)
%
% honor_original_bounds ("yes")
% Indicates whether final points should be projected into original bounds.
% Ipopt might relax the bounds during the optimization (see, e.g., option
% "bound_relax_factor"). This option determines whether the final point
% should be projected back into the user-provide original bounds after the
% optimization.
% Possible values:
% - no [Leave final point unchanged]
% - yes [Project final point back into original bounds]
%
% check_derivatives_for_naninf ("no")
% Indicates whether it is desired to check for Nan/Inf in derivative matrices
% Activating this option will cause an error if an invalid number is
% detected in the constraint Jacobians or the Lagrangian Hessian. If this
% is not activated, the test is skipped, and the algorithm might proceed
% with invalid numbers and fail.
% Possible values:
% - no [Don't check (faster).]
% - yes [Check Jacobians and Hessian for Nan and Inf.]
%
% jac_c_constant ("no")
% Indicates whether all equality constraints are linear
% Activating this option will cause Ipopt to ask for the Jacobian of the
% equality constraints only once from the NLP and reuse this information
% later.
% Possible values:
% - no [Don't assume that all equality constraints are
% linear]
% - yes [Assume that equality constraints Jacobian are
% constant]
%
% jac_d_constant ("no")
% Indicates whether all inequality constraints are linear
% Activating this option will cause Ipopt to ask for the Jacobian of the
% inequality constraints only once from the NLP and reuse this information
% later.
% Possible values:
% - no [Don't assume that all inequality constraints
% are linear]
% - yes [Assume that equality constraints Jacobian are
% constant]
%
% hessian_constant ("no")
% Indicates whether the problem is a quadratic problem
% Activating this option will cause Ipopt to ask for the Hessian of the
% Lagrangian function only once from the NLP and reuse this information
% later.
% Possible values:
% - no [Assume that Hessian changes]
% - yes [Assume that Hessian is constant]
%
%
%
% ### Initialization ###
%
% bound_push 0 < ( 0.01) < +inf
% Desired minimum absolute distance from the initial point to bound.
% Determines how much the initial point might have to be modified in order
% to be sufficiently inside the bounds (together with "bound_frac"). (This
% is kappa_1 in Section 3.6 of implementation paper.)
%
% bound_frac 0 < ( 0.01) <= 0.5
% Desired minimum relative distance from the initial point to bound.
% Determines how much the initial point might have to be modified in order
% to be sufficiently inside the bounds (together with "bound_push"). (This
% is kappa_2 in Section 3.6 of implementation paper.)
%
% slack_bound_push 0 < ( 0.01) < +inf
% Desired minimum absolute distance from the initial slack to bound.
% Determines how much the initial slack variables might have to be modified
% in order to be sufficiently inside the inequality bounds (together with
% "slack_bound_frac"). (This is kappa_1 in Section 3.6 of implementation
% paper.)
%
% slack_bound_frac 0 < ( 0.01) <= 0.5
% Desired minimum relative distance from the initial slack to bound.
% Determines how much the initial slack variables might have to be modified
% in order to be sufficiently inside the inequality bounds (together with
% "slack_bound_push"). (This is kappa_2 in Section 3.6 of implementation
% paper.)
%
% constr_mult_init_max 0 <= ( 1000) < +inf
% Maximum allowed least-square guess of constraint multipliers.
% Determines how large the initial least-square guesses of the constraint
% multipliers are allowed to be (in max-norm). If the guess is larger than
% this value, it is discarded and all constraint multipliers are set to
% zero. This options is also used when initializing the restoration phase.
% By default, "resto.constr_mult_init_max" (the one used in
% RestoIterateInitializer) is set to zero.
%
% bound_mult_init_val 0 < ( 1) < +inf
% Initial value for the bound multipliers.
% All dual variables corresponding to bound constraints are initialized to
% this value.
%
% bound_mult_init_method ("constant")
% Initialization method for bound multipliers
% This option defines how the iterates for the bound multipliers are
% initialized. If "constant" is chosen, then all bound multipliers are
% initialized to the value of "bound_mult_init_val". If "mu-based" is
% chosen, the each value is initialized to the the value of "mu_init"
% divided by the corresponding slack variable. This latter option might be
% useful if the starting point is close to the optimal solution.
% Possible values:
% - constant [set all bound multipliers to the value of
% bound_mult_init_val]
% - mu-based [initialize to mu_init/x_slack]
%
% least_square_init_primal ("no")
% Least square initialization of the primal variables
% If set to yes, Ipopt ignores the user provided point and solves a least
% square problem for the primal variables (x and s), to fit the linearized
% equality and inequality constraints. This might be useful if the user
% doesn't know anything about the starting point, or for solving an LP or
% QP.
% Possible values:
% - no [take user-provided point]
% - yes [overwrite user-provided point with least-square
% estimates]
%
% least_square_init_duals ("no")
% Least square initialization of all dual variables
% If set to yes, Ipopt tries to compute least-square multipliers
% (considering ALL dual variables). If successful, the bound multipliers
% are possibly corrected to be at least bound_mult_init_val. This might be
% useful if the user doesn't know anything about the starting point, or for
% solving an LP or QP. This overwrites option "bound_mult_init_method".
% Possible values:
% - no [use bound_mult_init_val and least-square
% equality constraint multipliers]
% - yes [overwrite user-provided point with least-square
% estimates]
%
%
%
% ### Barrier Parameter Update ###
%
% mu_max_fact 0 < ( 1000) < +inf
% Factor for initialization of maximum value for barrier parameter.
% This option determines the upper bound on the barrier parameter. This
% upper bound is computed as the average complementarity at the initial
% point times the value of this option. (Only used if option "mu_strategy"
% is chosen as "adaptive".)
%
% mu_max 0 < ( 100000) < +inf
% Maximum value for barrier parameter.
% This option specifies an upper bound on the barrier parameter in the
% adaptive mu selection mode. If this option is set, it overwrites the
% effect of mu_max_fact. (Only used if option "mu_strategy" is chosen as
% "adaptive".)
%
% mu_min 0 < ( 1e-11) < +inf
% Minimum value for barrier parameter.
% This option specifies the lower bound on the barrier parameter in the
% adaptive mu selection mode. By default, it is set to the minimum of 1e-11
% and min("tol","compl_inf_tol")/("barrier_tol_factor"+1), which should be
% a reasonable value. (Only used if option "mu_strategy" is chosen as
% "adaptive".)
%
% adaptive_mu_globalization ("obj-constr-filter")
% Globalization strategy for the adaptive mu selection mode.
% To achieve global convergence of the adaptive version, the algorithm has
% to switch to the monotone mode (Fiacco-McCormick approach) when
% convergence does not seem to appear. This option sets the criterion used
% to decide when to do this switch. (Only used if option "mu_strategy" is
% chosen as "adaptive".)
% Possible values:
% - kkt-error [nonmonotone decrease of kkt-error]
% - obj-constr-filter [2-dim filter for objective and constraint
% violation]
% - never-monotone-mode [disables globalization]
%
% adaptive_mu_kkterror_red_iters 0 <= ( 4) < +inf
% Maximum number of iterations requiring sufficient progress.
% For the "kkt-error" based globalization strategy, sufficient progress
% must be made for "adaptive_mu_kkterror_red_iters" iterations. If this
% number of iterations is exceeded, the globalization strategy switches to
% the monotone mode.
%
% adaptive_mu_kkterror_red_fact 0 < ( 0.9999) < 1
% Sufficient decrease factor for "kkt-error" globalization strategy.
% For the "kkt-error" based globalization strategy, the error must decrease
% by this factor to be deemed sufficient decrease.
%
% filter_margin_fact 0 < ( 1e-05) < 1
% Factor determining width of margin for obj-constr-filter adaptive
% globalization strategy.
% When using the adaptive globalization strategy, "obj-constr-filter",
% sufficient progress for a filter entry is defined as follows: (new obj) <
% (filter obj) - filter_margin_fact*(new constr-viol) OR (new constr-viol)
% < (filter constr-viol) - filter_margin_fact*(new constr-viol). For the
% description of the "kkt-error-filter" option see "filter_max_margin".
%
% filter_max_margin 0 < ( 1) < +inf
% Maximum width of margin in obj-constr-filter adaptive globalization
% strategy.
%
% adaptive_mu_restore_previous_iterate("no")
% Indicates if the previous iterate should be restored if the monotone mode
% is entered.
% When the globalization strategy for the adaptive barrier algorithm
% switches to the monotone mode, it can either start from the most recent
% iterate (no), or from the last iterate that was accepted (yes).
% Possible values:
% - no [don't restore accepted iterate]
% - yes [restore accepted iterate]
%
% adaptive_mu_monotone_init_factor 0 < ( 0.8) < +inf
% Determines the initial value of the barrier parameter when switching to the
% monotone mode.
% When the globalization strategy for the adaptive barrier algorithm
% switches to the monotone mode and fixed_mu_oracle is chosen as
% "average_compl", the barrier parameter is set to the current average
% complementarity times the value of "adaptive_mu_monotone_init_factor".
%
% adaptive_mu_kkt_norm_type ("2-norm-squared")
% Norm used for the KKT error in the adaptive mu globalization strategies.
% When computing the KKT error for the globalization strategies, the norm
% to be used is specified with this option. Note, this options is also used
% in the QualityFunctionMuOracle.
% Possible values:
% - 1-norm [use the 1-norm (abs sum)]
% - 2-norm-squared [use the 2-norm squared (sum of squares)]
% - max-norm [use the infinity norm (max)]
% - 2-norm [use 2-norm]
%
% mu_strategy ("monotone")
% Update strategy for barrier parameter.
% Determines which barrier parameter update strategy is to be used.
% Possible values:
% - monotone [use the monotone (Fiacco-McCormick) strategy]
% - adaptive [use the adaptive update strategy]
%
% mu_oracle ("quality-function")
% Oracle for a new barrier parameter in the adaptive strategy.
% Determines how a new barrier parameter is computed in each "free-mode"
% iteration of the adaptive barrier parameter strategy. (Only considered if
% "adaptive" is selected for option "mu_strategy").
% Possible values:
% - probing [Mehrotra's probing heuristic]
% - loqo [LOQO's centrality rule]
% - quality-function [minimize a quality function]
%
% fixed_mu_oracle ("average_compl")
% Oracle for the barrier parameter when switching to fixed mode.
% Determines how the first value of the barrier parameter should be
% computed when switching to the "monotone mode" in the adaptive strategy.
% (Only considered if "adaptive" is selected for option "mu_strategy".)
% Possible values:
% - probing [Mehrotra's probing heuristic]
% - loqo [LOQO's centrality rule]
% - quality-function [minimize a quality function]
% - average_compl [base on current average complementarity]
%
% mu_init 0 < ( 0.1) < +inf
% Initial value for the barrier parameter.
% This option determines the initial value for the barrier parameter (mu).
% It is only relevant in the monotone, Fiacco-McCormick version of the
% algorithm. (i.e., if "mu_strategy" is chosen as "monotone")
%
% barrier_tol_factor 0 < ( 10) < +inf
% Factor for mu in barrier stop test.
% The convergence tolerance for each barrier problem in the monotone mode
% is the value of the barrier parameter times "barrier_tol_factor". This
% option is also used in the adaptive mu strategy during the monotone mode.
% (This is kappa_epsilon in implementation paper).
%
% mu_linear_decrease_factor 0 < ( 0.2) < 1
% Determines linear decrease rate of barrier parameter.
% For the Fiacco-McCormick update procedure the new barrier parameter mu is
% obtained by taking the minimum of mu*"mu_linear_decrease_factor" and
% mu^"superlinear_decrease_power". (This is kappa_mu in implementation
% paper.) This option is also used in the adaptive mu strategy during the
% monotone mode.
%
% mu_superlinear_decrease_power 1 < ( 1.5) < 2
% Determines superlinear decrease rate of barrier parameter.
% For the Fiacco-McCormick update procedure the new barrier parameter mu is
% obtained by taking the minimum of mu*"mu_linear_decrease_factor" and
% mu^"superlinear_decrease_power". (This is theta_mu in implementation
% paper.) This option is also used in the adaptive mu strategy during the
% monotone mode.
%
% mu_allow_fast_monotone_decrease("yes")
% Allow skipping of barrier problem if barrier test is already met.
% If set to "no", the algorithm enforces at least one iteration per barrier
% problem, even if the barrier test is already met for the updated barrier
% parameter.
% Possible values:
% - no [Take at least one iteration per barrier problem]
% - yes [Allow fast decrease of mu if barrier test it met]
%
% tau_min 0 < ( 0.99) < 1
% Lower bound on fraction-to-the-boundary parameter tau.
% (This is tau_min in the implementation paper.) This option is also used
% in the adaptive mu strategy during the monotone mode.
%
% sigma_max 0 < ( 100) < +inf
% Maximum value of the centering parameter.
% This is the upper bound for the centering parameter chosen by the quality
% function based barrier parameter update. (Only used if option "mu_oracle"
% is set to "quality-function".)
%
% sigma_min 0 <= ( 1e-06) < +inf
% Minimum value of the centering parameter.
% This is the lower bound for the centering parameter chosen by the quality
% function based barrier parameter update. (Only used if option "mu_oracle"
% is set to "quality-function".)
%
% quality_function_norm_type ("2-norm-squared")
% Norm used for components of the quality function.
% (Only used if option "mu_oracle" is set to "quality-function".)
% Possible values:
% - 1-norm [use the 1-norm (abs sum)]
% - 2-norm-squared [use the 2-norm squared (sum of squares)]
% - max-norm [use the infinity norm (max)]
% - 2-norm [use 2-norm]
%
% quality_function_centrality ("none")
% The penalty term for centrality that is included in quality function.
% This determines whether a term is added to the quality function to
% penalize deviation from centrality with respect to complementarity. The
% complementarity measure here is the xi in the Loqo update rule. (Only
% used if option "mu_oracle" is set to "quality-function".)
% Possible values:
% - none [no penalty term is added]
% - log [complementarity * the log of the centrality
% measure]
% - reciprocal [complementarity * the reciprocal of the
% centrality measure]
% - cubed-reciprocal [complementarity * the reciprocal of the
% centrality measure cubed]
%
% quality_function_balancing_term("none")
% The balancing term included in the quality function for centrality.
% This determines whether a term is added to the quality function that
% penalizes situations where the complementarity is much smaller than dual
% and primal infeasibilities. (Only used if option "mu_oracle" is set to
% "quality-function".)
% Possible values:
% - none [no balancing term is added]
% - cubic [Max(0,Max(dual_inf,primal_inf)-compl)^3]
%
% quality_function_max_section_steps 0 <= ( 8) < +inf
% Maximum number of search steps during direct search procedure determining
% the optimal centering parameter.
% The golden section search is performed for the quality function based mu
% oracle. (Only used if option "mu_oracle" is set to "quality-function".)
%
% quality_function_section_sigma_tol 0 <= ( 0.01) < 1
% Tolerance for the section search procedure determining the optimal
% centering parameter (in sigma space).
% The golden section search is performed for the quality function based mu
% oracle. (Only used if option "mu_oracle" is set to "quality-function".)
%
% quality_function_section_qf_tol 0 <= ( 0) < 1
% Tolerance for the golden section search procedure determining the optimal
% centering parameter (in the function value space).
% The golden section search is performed for the quality function based mu
% oracle. (Only used if option "mu_oracle" is set to "quality-function".)
%
%
%
% ### Line Search ###
%
% alpha_red_factor 0 < ( 0.5) < 1
% Fractional reduction of the trial step size in the backtracking line search.
% At every step of the backtracking line search, the trial step size is
% reduced by this factor.
%
% accept_every_trial_step ("no")
% Always accept the first trial step.
% Setting this option to "yes" essentially disables the line search and
% makes the algorithm take aggressive steps, without global convergence
% guarantees.
% Possible values:
% - no [don't arbitrarily accept the full step]
% - yes [always accept the full step]
%
% accept_after_max_steps -1 <= ( -1) < +inf
% Accept a trial point after maximal this number of steps.
% Even if it does not satisfy line search conditions.
%
% alpha_for_y ("primal")
% Method to determine the step size for constraint multipliers.
% This option determines how the step size (alpha_y) will be calculated
% when updating the constraint multipliers.
% Possible values:
% - primal [use primal step size]
% - bound-mult [use step size for the bound multipliers (good
% for LPs)]
% - min [use the min of primal and bound multipliers]
% - max [use the max of primal and bound multipliers]
% - full [take a full step of size one]
% - min-dual-infeas [choose step size minimizing new dual
% infeasibility]
% - safer-min-dual-infeas [like "min_dual_infeas", but safeguarded by
% "min" and "max"]
% - primal-and-full [use the primal step size, and full step if
% delta_x <= alpha_for_y_tol]
% - dual-and-full [use the dual step size, and full step if
% delta_x <= alpha_for_y_tol]
% - acceptor [Call LSAcceptor to get step size for y]
%
% alpha_for_y_tol 0 <= ( 10) < +inf
% Tolerance for switching to full equality multiplier steps.
% This is only relevant if "alpha_for_y" is chosen "primal-and-full" or
% "dual-and-full". The step size for the equality constraint multipliers
% is taken to be one if the max-norm of the primal step is less than this
% tolerance.
%
% tiny_step_tol 0 <= (2.22045e-15) < +inf
% Tolerance for detecting numerically insignificant steps.
% If the search direction in the primal variables (x and s) is, in relative
% terms for each component, less than this value, the algorithm accepts the
% full step without line search. If this happens repeatedly, the algorithm
% will terminate with a corresponding exit message. The default value is 10
% times machine precision.
%
% tiny_step_y_tol 0 <= ( 0.01) < +inf
% Tolerance for quitting because of numerically insignificant steps.
% If the search direction in the primal variables (x and s) is, in relative
% terms for each component, repeatedly less than tiny_step_tol, and the
% step in the y variables is smaller than this threshold, the algorithm
% will terminate.
%
% watchdog_shortened_iter_trigger 0 <= ( 10) < +inf
% Number of shortened iterations that trigger the watchdog.
% If the number of successive iterations in which the backtracking line
% search did not accept the first trial point exceeds this number, the
% watchdog procedure is activated. Choosing "0" here disables the watchdog
% procedure.
%
% watchdog_trial_iter_max 1 <= ( 3) < +inf
% Maximum number of watchdog iterations.
% This option determines the number of trial iterations allowed before the
% watchdog procedure is aborted and the algorithm returns to the stored
% point.
%
% theta_max_fact 0 < ( 10000) < +inf
% Determines upper bound for constraint violation in the filter.
% The algorithmic parameter theta_max is determined as theta_max_fact times
% the maximum of 1 and the constraint violation at initial point. Any
% point with a constraint violation larger than theta_max is unacceptable
% to the filter (see Eqn. (21) in the implementation paper).
%
% theta_min_fact 0 < ( 0.0001) < +inf
% Determines constraint violation threshold in the switching rule.
% The algorithmic parameter theta_min is determined as theta_min_fact times
% the maximum of 1 and the constraint violation at initial point. The
% switching rules treats an iteration as an h-type iteration whenever the
% current constraint violation is larger than theta_min (see paragraph
% before Eqn. (19) in the implementation paper).
%
% eta_phi 0 < ( 1e-08) < 0.5
% Relaxation factor in the Armijo condition.
% (See Eqn. (20) in the implementation paper)
%
% delta 0 < ( 1) < +inf
% Multiplier for constraint violation in the switching rule.
% (See Eqn. (19) in the implementation paper.)
%
% s_phi 1 < ( 2.3) < +inf
% Exponent for linear barrier function model in the switching rule.
% (See Eqn. (19) in the implementation paper.)
%
% s_theta 1 < ( 1.1) < +inf
% Exponent for current constraint violation in the switching rule.
% (See Eqn. (19) in the implementation paper.)
%
% gamma_phi 0 < ( 1e-08) < 1
% Relaxation factor in the filter margin for the barrier function.
% (See Eqn. (18a) in the implementation paper.)
%
% gamma_theta 0 < ( 1e-05) < 1
% Relaxation factor in the filter margin for the constraint violation.
% (See Eqn. (18b) in the implementation paper.)
%
% alpha_min_frac 0 < ( 0.05) < 1
% Safety factor for the minimal step size (before switching to restoration
% phase).
% (This is gamma_alpha in Eqn. (20) in the implementation paper.)
%
% max_soc 0 <= ( 4) < +inf
% Maximum number of second order correction trial steps at each iteration.
% Choosing 0 disables the second order corrections. (This is p^{max} of
% Step A-5.9 of Algorithm A in the implementation paper.)
%
% kappa_soc 0 < ( 0.99) < +inf
% Factor in the sufficient reduction rule for second order correction.
% This option determines how much a second order correction step must
% reduce the constraint violation so that further correction steps are
% attempted. (See Step A-5.9 of Algorithm A in the implementation paper.)
%
% obj_max_inc 1 < ( 5) < +inf
% Determines the upper bound on the acceptable increase of barrier objective
% function.
% Trial points are rejected if they lead to an increase in the barrier
% objective function by more than obj_max_inc orders of magnitude.
%
% max_filter_resets 0 <= ( 5) < +inf
% Maximal allowed number of filter resets
% A positive number enables a heuristic that resets the filter, whenever in
% more than "filter_reset_trigger" successive iterations the last rejected
% trial steps size was rejected because of the filter. This option
% determine the maximal number of resets that are allowed to take place.
%
% filter_reset_trigger 1 <= ( 5) < +inf
% Number of iterations that trigger the filter reset.
% If the filter reset heuristic is active and the number of successive
% iterations in which the last rejected trial step size was rejected
% because of the filter, the filter is reset.
%
% corrector_type ("none")
% The type of corrector steps that should be taken (unsupported!).