-
Notifications
You must be signed in to change notification settings - Fork 2k
/
bn256.go
429 lines (362 loc) · 10.1 KB
/
bn256.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package bn256 implements a particular bilinear group.
//
// Bilinear groups are the basis of many of the new cryptographic protocols
// that have been proposed over the past decade. They consist of a triplet of
// groups (G₁, G₂ and GT) such that there exists a function e(g₁ˣ,g₂ʸ)=gTˣʸ
// (where gₓ is a generator of the respective group). That function is called
// a pairing function.
//
// This package specifically implements the Optimal Ate pairing over a 256-bit
// Barreto-Naehrig curve as described in
// http://cryptojedi.org/papers/dclxvi-20100714.pdf. Its output is compatible
// with the implementation described in that paper.
//
// This package previously claimed to operate at a 128-bit security level.
// However, recent improvements in attacks mean that is no longer true. See
// https://moderncrypto.org/mail-archive/curves/2016/000740.html.
//
// Deprecated: due to its weakened security, new systems should not rely on this
// elliptic curve. This package is frozen, and not implemented in constant time.
// There is a more complete implementation at github.com/cloudflare/bn256, but
// note that it suffers from the same security issues of the underlying curve.
package bn256
import (
"crypto/rand"
"io"
"math/big"
)
// G1 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G1 struct {
p *curvePoint
}
// RandomG1 returns x and g₁ˣ where x is a random, non-zero number read from r.
func RandomG1(r io.Reader) (*big.Int, *G1, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G1).ScalarBaseMult(k), nil
}
func (e *G1) String() string {
if e.p == nil {
return "bn256.G1" + newCurvePoint(nil).String()
}
return "bn256.G1" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns e.
func (e *G1) ScalarBaseMult(k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(curveGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G1) ScalarMult(a *G1, k *big.Int) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
//
// Warning: this function is not complete, it fails for a equal to b.
func (e *G1) Add(a, b *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *G1) Neg(a *G1) *G1 {
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.Negative(a.p)
return e
}
// Marshal converts n to a byte slice.
func (e *G1) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if e.p.IsInfinity() {
return make([]byte, numBytes*2)
}
e.p.MakeAffine(nil)
xBytes := new(big.Int).Mod(e.p.x, p).Bytes()
yBytes := new(big.Int).Mod(e.p.y, p).Bytes()
ret := make([]byte, numBytes*2)
copy(ret[1*numBytes-len(xBytes):], xBytes)
copy(ret[2*numBytes-len(yBytes):], yBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G1) Unmarshal(m []byte) (*G1, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 2*numBytes {
return nil, false
}
if e.p == nil {
e.p = newCurvePoint(nil)
}
e.p.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.y.SetBytes(m[1*numBytes : 2*numBytes])
if e.p.x.Sign() == 0 && e.p.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetInt64(1)
e.p.z.SetInt64(0)
e.p.t.SetInt64(0)
} else {
e.p.z.SetInt64(1)
e.p.t.SetInt64(1)
if !e.p.IsOnCurve() {
return nil, false
}
}
return e, true
}
// G2 is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type G2 struct {
p *twistPoint
}
// RandomG2 returns x and g₂ˣ where x is a random, non-zero number read from r.
func RandomG2(r io.Reader) (*big.Int, *G2, error) {
var k *big.Int
var err error
for {
k, err = rand.Int(r, Order)
if err != nil {
return nil, nil, err
}
if k.Sign() > 0 {
break
}
}
return k, new(G2).ScalarBaseMult(k), nil
}
func (e *G2) String() string {
if e.p == nil {
return "bn256.G2" + newTwistPoint(nil).String()
}
return "bn256.G2" + e.p.String()
}
// ScalarBaseMult sets e to g*k where g is the generator of the group and
// then returns out.
func (e *G2) ScalarBaseMult(k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(twistGen, k, new(bnPool))
return e
}
// ScalarMult sets e to a*k and then returns e.
func (e *G2) ScalarMult(a *G2, k *big.Int) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Mul(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
//
// Warning: this function is not complete, it fails for a equal to b.
func (e *G2) Add(a, b *G2) *G2 {
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.Add(a.p, b.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *G2) Marshal() []byte {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if n.p.IsInfinity() {
return make([]byte, numBytes*4)
}
n.p.MakeAffine(nil)
xxBytes := new(big.Int).Mod(n.p.x.x, p).Bytes()
xyBytes := new(big.Int).Mod(n.p.x.y, p).Bytes()
yxBytes := new(big.Int).Mod(n.p.y.x, p).Bytes()
yyBytes := new(big.Int).Mod(n.p.y.y, p).Bytes()
ret := make([]byte, numBytes*4)
copy(ret[1*numBytes-len(xxBytes):], xxBytes)
copy(ret[2*numBytes-len(xyBytes):], xyBytes)
copy(ret[3*numBytes-len(yxBytes):], yxBytes)
copy(ret[4*numBytes-len(yyBytes):], yyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *G2) Unmarshal(m []byte) (*G2, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 4*numBytes {
return nil, false
}
if e.p == nil {
e.p = newTwistPoint(nil)
}
e.p.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.y.y.SetBytes(m[3*numBytes : 4*numBytes])
if e.p.x.x.Sign() == 0 &&
e.p.x.y.Sign() == 0 &&
e.p.y.x.Sign() == 0 &&
e.p.y.y.Sign() == 0 {
// This is the point at infinity.
e.p.y.SetOne()
e.p.z.SetZero()
e.p.t.SetZero()
} else {
e.p.z.SetOne()
e.p.t.SetOne()
if !e.p.IsOnCurve() {
return nil, false
}
}
return e, true
}
// GT is an abstract cyclic group. The zero value is suitable for use as the
// output of an operation, but cannot be used as an input.
type GT struct {
p *gfP12
}
func (e *GT) String() string {
if e.p == nil {
return "bn256.GT" + newGFp12(nil).String()
}
return "bn256.GT" + e.p.String()
}
// ScalarMult sets e to a*k and then returns e.
func (e *GT) ScalarMult(a *GT, k *big.Int) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Exp(a.p, k, new(bnPool))
return e
}
// Add sets e to a+b and then returns e.
func (e *GT) Add(a, b *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Mul(a.p, b.p, new(bnPool))
return e
}
// Neg sets e to -a and then returns e.
func (e *GT) Neg(a *GT) *GT {
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.Invert(a.p, new(bnPool))
return e
}
// Marshal converts n into a byte slice.
func (n *GT) Marshal() []byte {
n.p.Minimal()
xxxBytes := n.p.x.x.x.Bytes()
xxyBytes := n.p.x.x.y.Bytes()
xyxBytes := n.p.x.y.x.Bytes()
xyyBytes := n.p.x.y.y.Bytes()
xzxBytes := n.p.x.z.x.Bytes()
xzyBytes := n.p.x.z.y.Bytes()
yxxBytes := n.p.y.x.x.Bytes()
yxyBytes := n.p.y.x.y.Bytes()
yyxBytes := n.p.y.y.x.Bytes()
yyyBytes := n.p.y.y.y.Bytes()
yzxBytes := n.p.y.z.x.Bytes()
yzyBytes := n.p.y.z.y.Bytes()
// Each value is a 256-bit number.
const numBytes = 256 / 8
ret := make([]byte, numBytes*12)
copy(ret[1*numBytes-len(xxxBytes):], xxxBytes)
copy(ret[2*numBytes-len(xxyBytes):], xxyBytes)
copy(ret[3*numBytes-len(xyxBytes):], xyxBytes)
copy(ret[4*numBytes-len(xyyBytes):], xyyBytes)
copy(ret[5*numBytes-len(xzxBytes):], xzxBytes)
copy(ret[6*numBytes-len(xzyBytes):], xzyBytes)
copy(ret[7*numBytes-len(yxxBytes):], yxxBytes)
copy(ret[8*numBytes-len(yxyBytes):], yxyBytes)
copy(ret[9*numBytes-len(yyxBytes):], yyxBytes)
copy(ret[10*numBytes-len(yyyBytes):], yyyBytes)
copy(ret[11*numBytes-len(yzxBytes):], yzxBytes)
copy(ret[12*numBytes-len(yzyBytes):], yzyBytes)
return ret
}
// Unmarshal sets e to the result of converting the output of Marshal back into
// a group element and then returns e.
func (e *GT) Unmarshal(m []byte) (*GT, bool) {
// Each value is a 256-bit number.
const numBytes = 256 / 8
if len(m) != 12*numBytes {
return nil, false
}
if e.p == nil {
e.p = newGFp12(nil)
}
e.p.x.x.x.SetBytes(m[0*numBytes : 1*numBytes])
e.p.x.x.y.SetBytes(m[1*numBytes : 2*numBytes])
e.p.x.y.x.SetBytes(m[2*numBytes : 3*numBytes])
e.p.x.y.y.SetBytes(m[3*numBytes : 4*numBytes])
e.p.x.z.x.SetBytes(m[4*numBytes : 5*numBytes])
e.p.x.z.y.SetBytes(m[5*numBytes : 6*numBytes])
e.p.y.x.x.SetBytes(m[6*numBytes : 7*numBytes])
e.p.y.x.y.SetBytes(m[7*numBytes : 8*numBytes])
e.p.y.y.x.SetBytes(m[8*numBytes : 9*numBytes])
e.p.y.y.y.SetBytes(m[9*numBytes : 10*numBytes])
e.p.y.z.x.SetBytes(m[10*numBytes : 11*numBytes])
e.p.y.z.y.SetBytes(m[11*numBytes : 12*numBytes])
return e, true
}
// Pair calculates an Optimal Ate pairing.
func Pair(g1 *G1, g2 *G2) *GT {
return >{optimalAte(g2.p, g1.p, new(bnPool))}
}
// bnPool implements a tiny cache of *big.Int objects that's used to reduce the
// number of allocations made during processing.
type bnPool struct {
bns []*big.Int
count int
}
func (pool *bnPool) Get() *big.Int {
if pool == nil {
return new(big.Int)
}
pool.count++
l := len(pool.bns)
if l == 0 {
return new(big.Int)
}
bn := pool.bns[l-1]
pool.bns = pool.bns[:l-1]
return bn
}
func (pool *bnPool) Put(bn *big.Int) {
if pool == nil {
return
}
pool.bns = append(pool.bns, bn)
pool.count--
}
func (pool *bnPool) Count() int {
return pool.count
}