-
Notifications
You must be signed in to change notification settings - Fork 17.8k
/
Copy pathpanic.go
1525 lines (1354 loc) · 44.5 KB
/
panic.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"internal/runtime/atomic"
"internal/runtime/sys"
"internal/stringslite"
"unsafe"
)
// throwType indicates the current type of ongoing throw, which affects the
// amount of detail printed to stderr. Higher values include more detail.
type throwType uint32
const (
// throwTypeNone means that we are not throwing.
throwTypeNone throwType = iota
// throwTypeUser is a throw due to a problem with the application.
//
// These throws do not include runtime frames, system goroutines, or
// frame metadata.
throwTypeUser
// throwTypeRuntime is a throw due to a problem with Go itself.
//
// These throws include as much information as possible to aid in
// debugging the runtime, including runtime frames, system goroutines,
// and frame metadata.
throwTypeRuntime
)
// We have two different ways of doing defers. The older way involves creating a
// defer record at the time that a defer statement is executing and adding it to a
// defer chain. This chain is inspected by the deferreturn call at all function
// exits in order to run the appropriate defer calls. A cheaper way (which we call
// open-coded defers) is used for functions in which no defer statements occur in
// loops. In that case, we simply store the defer function/arg information into
// specific stack slots at the point of each defer statement, as well as setting a
// bit in a bitmask. At each function exit, we add inline code to directly make
// the appropriate defer calls based on the bitmask and fn/arg information stored
// on the stack. During panic/Goexit processing, the appropriate defer calls are
// made using extra funcdata info that indicates the exact stack slots that
// contain the bitmask and defer fn/args.
// Check to make sure we can really generate a panic. If the panic
// was generated from the runtime, or from inside malloc, then convert
// to a throw of msg.
// pc should be the program counter of the compiler-generated code that
// triggered this panic.
func panicCheck1(pc uintptr, msg string) {
if goarch.IsWasm == 0 && stringslite.HasPrefix(funcname(findfunc(pc)), "runtime.") {
// Note: wasm can't tail call, so we can't get the original caller's pc.
throw(msg)
}
// TODO: is this redundant? How could we be in malloc
// but not in the runtime? runtime/internal/*, maybe?
gp := getg()
if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
throw(msg)
}
}
// Same as above, but calling from the runtime is allowed.
//
// Using this function is necessary for any panic that may be
// generated by runtime.sigpanic, since those are always called by the
// runtime.
func panicCheck2(err string) {
// panic allocates, so to avoid recursive malloc, turn panics
// during malloc into throws.
gp := getg()
if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
throw(err)
}
}
// Many of the following panic entry-points turn into throws when they
// happen in various runtime contexts. These should never happen in
// the runtime, and if they do, they indicate a serious issue and
// should not be caught by user code.
//
// The panic{Index,Slice,divide,shift} functions are called by
// code generated by the compiler for out of bounds index expressions,
// out of bounds slice expressions, division by zero, and shift by negative.
// The panicdivide (again), panicoverflow, panicfloat, and panicmem
// functions are called by the signal handler when a signal occurs
// indicating the respective problem.
//
// Since panic{Index,Slice,shift} are never called directly, and
// since the runtime package should never have an out of bounds slice
// or array reference or negative shift, if we see those functions called from the
// runtime package we turn the panic into a throw. That will dump the
// entire runtime stack for easier debugging.
//
// The entry points called by the signal handler will be called from
// runtime.sigpanic, so we can't disallow calls from the runtime to
// these (they always look like they're called from the runtime).
// Hence, for these, we just check for clearly bad runtime conditions.
//
// The panic{Index,Slice} functions are implemented in assembly and tail call
// to the goPanic{Index,Slice} functions below. This is done so we can use
// a space-minimal register calling convention.
// failures in the comparisons for s[x], 0 <= x < y (y == len(s))
//
//go:yeswritebarrierrec
func goPanicIndex(x int, y int) {
panicCheck1(sys.GetCallerPC(), "index out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsIndex})
}
//go:yeswritebarrierrec
func goPanicIndexU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "index out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsIndex})
}
// failures in the comparisons for s[:x], 0 <= x <= y (y == len(s) or cap(s))
//
//go:yeswritebarrierrec
func goPanicSliceAlen(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceAlen})
}
//go:yeswritebarrierrec
func goPanicSliceAlenU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceAlen})
}
//go:yeswritebarrierrec
func goPanicSliceAcap(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceAcap})
}
//go:yeswritebarrierrec
func goPanicSliceAcapU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceAcap})
}
// failures in the comparisons for s[x:y], 0 <= x <= y
//
//go:yeswritebarrierrec
func goPanicSliceB(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSliceB})
}
//go:yeswritebarrierrec
func goPanicSliceBU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSliceB})
}
// failures in the comparisons for s[::x], 0 <= x <= y (y == len(s) or cap(s))
func goPanicSlice3Alen(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3Alen})
}
func goPanicSlice3AlenU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3Alen})
}
func goPanicSlice3Acap(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3Acap})
}
func goPanicSlice3AcapU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3Acap})
}
// failures in the comparisons for s[:x:y], 0 <= x <= y
func goPanicSlice3B(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3B})
}
func goPanicSlice3BU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3B})
}
// failures in the comparisons for s[x:y:], 0 <= x <= y
func goPanicSlice3C(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsSlice3C})
}
func goPanicSlice3CU(x uint, y int) {
panicCheck1(sys.GetCallerPC(), "slice bounds out of range")
panic(boundsError{x: int64(x), signed: false, y: y, code: boundsSlice3C})
}
// failures in the conversion ([x]T)(s) or (*[x]T)(s), 0 <= x <= y, y == len(s)
func goPanicSliceConvert(x int, y int) {
panicCheck1(sys.GetCallerPC(), "slice length too short to convert to array or pointer to array")
panic(boundsError{x: int64(x), signed: true, y: y, code: boundsConvert})
}
// Implemented in assembly, as they take arguments in registers.
// Declared here to mark them as ABIInternal.
func panicIndex(x int, y int)
func panicIndexU(x uint, y int)
func panicSliceAlen(x int, y int)
func panicSliceAlenU(x uint, y int)
func panicSliceAcap(x int, y int)
func panicSliceAcapU(x uint, y int)
func panicSliceB(x int, y int)
func panicSliceBU(x uint, y int)
func panicSlice3Alen(x int, y int)
func panicSlice3AlenU(x uint, y int)
func panicSlice3Acap(x int, y int)
func panicSlice3AcapU(x uint, y int)
func panicSlice3B(x int, y int)
func panicSlice3BU(x uint, y int)
func panicSlice3C(x int, y int)
func panicSlice3CU(x uint, y int)
func panicSliceConvert(x int, y int)
var shiftError = error(errorString("negative shift amount"))
//go:yeswritebarrierrec
func panicshift() {
panicCheck1(sys.GetCallerPC(), "negative shift amount")
panic(shiftError)
}
var divideError = error(errorString("integer divide by zero"))
//go:yeswritebarrierrec
func panicdivide() {
panicCheck2("integer divide by zero")
panic(divideError)
}
var overflowError = error(errorString("integer overflow"))
func panicoverflow() {
panicCheck2("integer overflow")
panic(overflowError)
}
var floatError = error(errorString("floating point error"))
func panicfloat() {
panicCheck2("floating point error")
panic(floatError)
}
var memoryError = error(errorString("invalid memory address or nil pointer dereference"))
func panicmem() {
panicCheck2("invalid memory address or nil pointer dereference")
panic(memoryError)
}
func panicmemAddr(addr uintptr) {
panicCheck2("invalid memory address or nil pointer dereference")
panic(errorAddressString{msg: "invalid memory address or nil pointer dereference", addr: addr})
}
// Create a new deferred function fn, which has no arguments and results.
// The compiler turns a defer statement into a call to this.
func deferproc(fn func()) {
gp := getg()
if gp.m.curg != gp {
// go code on the system stack can't defer
throw("defer on system stack")
}
d := newdefer()
d.link = gp._defer
gp._defer = d
d.fn = fn
d.pc = sys.GetCallerPC()
// We must not be preempted between calling GetCallerSP and
// storing it to d.sp because GetCallerSP's result is a
// uintptr stack pointer.
d.sp = sys.GetCallerSP()
// deferproc returns 0 normally.
// a deferred func that stops a panic
// makes the deferproc return 1.
// the code the compiler generates always
// checks the return value and jumps to the
// end of the function if deferproc returns != 0.
return0()
// No code can go here - the C return register has
// been set and must not be clobbered.
}
var rangeDoneError = error(errorString("range function continued iteration after function for loop body returned false"))
var rangePanicError = error(errorString("range function continued iteration after loop body panic"))
var rangeExhaustedError = error(errorString("range function continued iteration after whole loop exit"))
var rangeMissingPanicError = error(errorString("range function recovered a loop body panic and did not resume panicking"))
//go:noinline
func panicrangestate(state int) {
switch abi.RF_State(state) {
case abi.RF_DONE:
panic(rangeDoneError)
case abi.RF_PANIC:
panic(rangePanicError)
case abi.RF_EXHAUSTED:
panic(rangeExhaustedError)
case abi.RF_MISSING_PANIC:
panic(rangeMissingPanicError)
}
throw("unexpected state passed to panicrangestate")
}
// deferrangefunc is called by functions that are about to
// execute a range-over-function loop in which the loop body
// may execute a defer statement. That defer needs to add to
// the chain for the current function, not the func literal synthesized
// to represent the loop body. To do that, the original function
// calls deferrangefunc to obtain an opaque token representing
// the current frame, and then the loop body uses deferprocat
// instead of deferproc to add to that frame's defer lists.
//
// The token is an 'any' with underlying type *atomic.Pointer[_defer].
// It is the atomically-updated head of a linked list of _defer structs
// representing deferred calls. At the same time, we create a _defer
// struct on the main g._defer list with d.head set to this head pointer.
//
// The g._defer list is now a linked list of deferred calls,
// but an atomic list hanging off:
//
// g._defer => d4 -> d3 -> drangefunc -> d2 -> d1 -> nil
// | .head
// |
// +--> dY -> dX -> nil
//
// with each -> indicating a d.link pointer, and where drangefunc
// has the d.rangefunc = true bit set.
// Note that the function being ranged over may have added
// its own defers (d4 and d3), so drangefunc need not be at the
// top of the list when deferprocat is used. This is why we pass
// the atomic head explicitly.
//
// To keep misbehaving programs from crashing the runtime,
// deferprocat pushes new defers onto the .head list atomically.
// The fact that it is a separate list from the main goroutine
// defer list means that the main goroutine's defers can still
// be handled non-atomically.
//
// In the diagram, dY and dX are meant to be processed when
// drangefunc would be processed, which is to say the defer order
// should be d4, d3, dY, dX, d2, d1. To make that happen,
// when defer processing reaches a d with rangefunc=true,
// it calls deferconvert to atomically take the extras
// away from d.head and then adds them to the main list.
//
// That is, deferconvert changes this list:
//
// g._defer => drangefunc -> d2 -> d1 -> nil
// | .head
// |
// +--> dY -> dX -> nil
//
// into this list:
//
// g._defer => dY -> dX -> d2 -> d1 -> nil
//
// It also poisons *drangefunc.head so that any future
// deferprocat using that head will throw.
// (The atomic head is ordinary garbage collected memory so that
// it's not a problem if user code holds onto it beyond
// the lifetime of drangefunc.)
//
// TODO: We could arrange for the compiler to call into the
// runtime after the loop finishes normally, to do an eager
// deferconvert, which would catch calling the loop body
// and having it defer after the loop is done. If we have a
// more general catch of loop body misuse, though, this
// might not be worth worrying about in addition.
//
// See also ../cmd/compile/internal/rangefunc/rewrite.go.
func deferrangefunc() any {
gp := getg()
if gp.m.curg != gp {
// go code on the system stack can't defer
throw("defer on system stack")
}
d := newdefer()
d.link = gp._defer
gp._defer = d
d.pc = sys.GetCallerPC()
// We must not be preempted between calling GetCallerSP and
// storing it to d.sp because GetCallerSP's result is a
// uintptr stack pointer.
d.sp = sys.GetCallerSP()
d.rangefunc = true
d.head = new(atomic.Pointer[_defer])
return d.head
}
// badDefer returns a fixed bad defer pointer for poisoning an atomic defer list head.
func badDefer() *_defer {
return (*_defer)(unsafe.Pointer(uintptr(1)))
}
// deferprocat is like deferproc but adds to the atomic list represented by frame.
// See the doc comment for deferrangefunc for details.
func deferprocat(fn func(), frame any) {
head := frame.(*atomic.Pointer[_defer])
if raceenabled {
racewritepc(unsafe.Pointer(head), sys.GetCallerPC(), abi.FuncPCABIInternal(deferprocat))
}
d1 := newdefer()
d1.fn = fn
for {
d1.link = head.Load()
if d1.link == badDefer() {
throw("defer after range func returned")
}
if head.CompareAndSwap(d1.link, d1) {
break
}
}
// Must be last - see deferproc above.
return0()
}
// deferconvert converts the rangefunc defer list of d0 into an ordinary list
// following d0.
// See the doc comment for deferrangefunc for details.
func deferconvert(d0 *_defer) {
head := d0.head
if raceenabled {
racereadpc(unsafe.Pointer(head), sys.GetCallerPC(), abi.FuncPCABIInternal(deferconvert))
}
tail := d0.link
d0.rangefunc = false
var d *_defer
for {
d = head.Load()
if head.CompareAndSwap(d, badDefer()) {
break
}
}
if d == nil {
return
}
for d1 := d; ; d1 = d1.link {
d1.sp = d0.sp
d1.pc = d0.pc
if d1.link == nil {
d1.link = tail
break
}
}
d0.link = d
return
}
// deferprocStack queues a new deferred function with a defer record on the stack.
// The defer record must have its fn field initialized.
// All other fields can contain junk.
// Nosplit because of the uninitialized pointer fields on the stack.
//
//go:nosplit
func deferprocStack(d *_defer) {
gp := getg()
if gp.m.curg != gp {
// go code on the system stack can't defer
throw("defer on system stack")
}
// fn is already set.
// The other fields are junk on entry to deferprocStack and
// are initialized here.
d.heap = false
d.rangefunc = false
d.sp = sys.GetCallerSP()
d.pc = sys.GetCallerPC()
// The lines below implement:
// d.panic = nil
// d.fd = nil
// d.link = gp._defer
// d.head = nil
// gp._defer = d
// But without write barriers. The first three are writes to
// the stack so they don't need a write barrier, and furthermore
// are to uninitialized memory, so they must not use a write barrier.
// The fourth write does not require a write barrier because we
// explicitly mark all the defer structures, so we don't need to
// keep track of pointers to them with a write barrier.
*(*uintptr)(unsafe.Pointer(&d.link)) = uintptr(unsafe.Pointer(gp._defer))
*(*uintptr)(unsafe.Pointer(&d.head)) = 0
*(*uintptr)(unsafe.Pointer(&gp._defer)) = uintptr(unsafe.Pointer(d))
return0()
// No code can go here - the C return register has
// been set and must not be clobbered.
}
// Each P holds a pool for defers.
// Allocate a Defer, usually using per-P pool.
// Each defer must be released with freedefer. The defer is not
// added to any defer chain yet.
func newdefer() *_defer {
var d *_defer
mp := acquirem()
pp := mp.p.ptr()
if len(pp.deferpool) == 0 && sched.deferpool != nil {
lock(&sched.deferlock)
for len(pp.deferpool) < cap(pp.deferpool)/2 && sched.deferpool != nil {
d := sched.deferpool
sched.deferpool = d.link
d.link = nil
pp.deferpool = append(pp.deferpool, d)
}
unlock(&sched.deferlock)
}
if n := len(pp.deferpool); n > 0 {
d = pp.deferpool[n-1]
pp.deferpool[n-1] = nil
pp.deferpool = pp.deferpool[:n-1]
}
releasem(mp)
mp, pp = nil, nil
if d == nil {
// Allocate new defer.
d = new(_defer)
}
d.heap = true
return d
}
// popDefer pops the head of gp's defer list and frees it.
func popDefer(gp *g) {
d := gp._defer
d.fn = nil // Can in theory point to the stack
// We must not copy the stack between the updating gp._defer and setting
// d.link to nil. Between these two steps, d is not on any defer list, so
// stack copying won't adjust stack pointers in it (namely, d.link). Hence,
// if we were to copy the stack, d could then contain a stale pointer.
gp._defer = d.link
d.link = nil
// After this point we can copy the stack.
if !d.heap {
return
}
mp := acquirem()
pp := mp.p.ptr()
if len(pp.deferpool) == cap(pp.deferpool) {
// Transfer half of local cache to the central cache.
var first, last *_defer
for len(pp.deferpool) > cap(pp.deferpool)/2 {
n := len(pp.deferpool)
d := pp.deferpool[n-1]
pp.deferpool[n-1] = nil
pp.deferpool = pp.deferpool[:n-1]
if first == nil {
first = d
} else {
last.link = d
}
last = d
}
lock(&sched.deferlock)
last.link = sched.deferpool
sched.deferpool = first
unlock(&sched.deferlock)
}
*d = _defer{}
pp.deferpool = append(pp.deferpool, d)
releasem(mp)
mp, pp = nil, nil
}
// deferreturn runs deferred functions for the caller's frame.
// The compiler inserts a call to this at the end of any
// function which calls defer.
func deferreturn() {
var p _panic
p.deferreturn = true
p.start(sys.GetCallerPC(), unsafe.Pointer(sys.GetCallerSP()))
for {
fn, ok := p.nextDefer()
if !ok {
break
}
fn()
}
}
// Goexit terminates the goroutine that calls it. No other goroutine is affected.
// Goexit runs all deferred calls before terminating the goroutine. Because Goexit
// is not a panic, any recover calls in those deferred functions will return nil.
//
// Calling Goexit from the main goroutine terminates that goroutine
// without func main returning. Since func main has not returned,
// the program continues execution of other goroutines.
// If all other goroutines exit, the program crashes.
//
// It crashes if called from a thread not created by the Go runtime.
func Goexit() {
// Create a panic object for Goexit, so we can recognize when it might be
// bypassed by a recover().
var p _panic
p.goexit = true
p.start(sys.GetCallerPC(), unsafe.Pointer(sys.GetCallerSP()))
for {
fn, ok := p.nextDefer()
if !ok {
break
}
fn()
}
goexit1()
}
// Call all Error and String methods before freezing the world.
// Used when crashing with panicking.
func preprintpanics(p *_panic) {
defer func() {
text := "panic while printing panic value"
switch r := recover().(type) {
case nil:
// nothing to do
case string:
throw(text + ": " + r)
default:
throw(text + ": type " + toRType(efaceOf(&r)._type).string())
}
}()
for p != nil {
switch v := p.arg.(type) {
case error:
p.arg = v.Error()
case stringer:
p.arg = v.String()
}
p = p.link
}
}
// Print all currently active panics. Used when crashing.
// Should only be called after preprintpanics.
func printpanics(p *_panic) {
if p.link != nil {
printpanics(p.link)
if !p.link.goexit {
print("\t")
}
}
if p.goexit {
return
}
print("panic: ")
printpanicval(p.arg)
if p.recovered {
print(" [recovered]")
}
print("\n")
}
// readvarintUnsafe reads the uint32 in varint format starting at fd, and returns the
// uint32 and a pointer to the byte following the varint.
//
// The implementation is the same with runtime.readvarint, except that this function
// uses unsafe.Pointer for speed.
func readvarintUnsafe(fd unsafe.Pointer) (uint32, unsafe.Pointer) {
var r uint32
var shift int
for {
b := *(*uint8)(fd)
fd = add(fd, unsafe.Sizeof(b))
if b < 128 {
return r + uint32(b)<<shift, fd
}
r += uint32(b&0x7F) << (shift & 31)
shift += 7
if shift > 28 {
panic("Bad varint")
}
}
}
// A PanicNilError happens when code calls panic(nil).
//
// Before Go 1.21, programs that called panic(nil) observed recover returning nil.
// Starting in Go 1.21, programs that call panic(nil) observe recover returning a *PanicNilError.
// Programs can change back to the old behavior by setting GODEBUG=panicnil=1.
type PanicNilError struct {
// This field makes PanicNilError structurally different from
// any other struct in this package, and the _ makes it different
// from any struct in other packages too.
// This avoids any accidental conversions being possible
// between this struct and some other struct sharing the same fields,
// like happened in go.dev/issue/56603.
_ [0]*PanicNilError
}
func (*PanicNilError) Error() string { return "panic called with nil argument" }
func (*PanicNilError) RuntimeError() {}
var panicnil = &godebugInc{name: "panicnil"}
// The implementation of the predeclared function panic.
// The compiler emits calls to this function.
//
// gopanic should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - go.undefinedlabs.com/scopeagent
// - github.com/goplus/igop
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
//
//go:linkname gopanic
func gopanic(e any) {
if e == nil {
if debug.panicnil.Load() != 1 {
e = new(PanicNilError)
} else {
panicnil.IncNonDefault()
}
}
gp := getg()
if gp.m.curg != gp {
print("panic: ")
printpanicval(e)
print("\n")
throw("panic on system stack")
}
if gp.m.mallocing != 0 {
print("panic: ")
printpanicval(e)
print("\n")
throw("panic during malloc")
}
if gp.m.preemptoff != "" {
print("panic: ")
printpanicval(e)
print("\n")
print("preempt off reason: ")
print(gp.m.preemptoff)
print("\n")
throw("panic during preemptoff")
}
if gp.m.locks != 0 {
print("panic: ")
printpanicval(e)
print("\n")
throw("panic holding locks")
}
var p _panic
p.arg = e
runningPanicDefers.Add(1)
p.start(sys.GetCallerPC(), unsafe.Pointer(sys.GetCallerSP()))
for {
fn, ok := p.nextDefer()
if !ok {
break
}
fn()
}
// If we're tracing, flush the current generation to make the trace more
// readable.
//
// TODO(aktau): Handle a panic from within traceAdvance more gracefully.
// Currently it would hang. Not handled now because it is very unlikely, and
// already unrecoverable.
if traceEnabled() {
traceAdvance(false)
}
// ran out of deferred calls - old-school panic now
// Because it is unsafe to call arbitrary user code after freezing
// the world, we call preprintpanics to invoke all necessary Error
// and String methods to prepare the panic strings before startpanic.
preprintpanics(&p)
fatalpanic(&p) // should not return
*(*int)(nil) = 0 // not reached
}
// start initializes a panic to start unwinding the stack.
//
// If p.goexit is true, then start may return multiple times.
func (p *_panic) start(pc uintptr, sp unsafe.Pointer) {
gp := getg()
// Record the caller's PC and SP, so recovery can identify panics
// that have been recovered. Also, so that if p is from Goexit, we
// can restart its defer processing loop if a recovered panic tries
// to jump past it.
p.startPC = sys.GetCallerPC()
p.startSP = unsafe.Pointer(sys.GetCallerSP())
if p.deferreturn {
p.sp = sp
if s := (*savedOpenDeferState)(gp.param); s != nil {
// recovery saved some state for us, so that we can resume
// calling open-coded defers without unwinding the stack.
gp.param = nil
p.retpc = s.retpc
p.deferBitsPtr = (*byte)(add(sp, s.deferBitsOffset))
p.slotsPtr = add(sp, s.slotsOffset)
}
return
}
p.link = gp._panic
gp._panic = (*_panic)(noescape(unsafe.Pointer(p)))
// Initialize state machine, and find the first frame with a defer.
//
// Note: We could use startPC and startSP here, but callers will
// never have defer statements themselves. By starting at their
// caller instead, we avoid needing to unwind through an extra
// frame. It also somewhat simplifies the terminating condition for
// deferreturn.
p.lr, p.fp = pc, sp
p.nextFrame()
}
// nextDefer returns the next deferred function to invoke, if any.
//
// Note: The "ok bool" result is necessary to correctly handle when
// the deferred function itself was nil (e.g., "defer (func())(nil)").
func (p *_panic) nextDefer() (func(), bool) {
gp := getg()
if !p.deferreturn {
if gp._panic != p {
throw("bad panic stack")
}
if p.recovered {
mcall(recovery) // does not return
throw("recovery failed")
}
}
// The assembler adjusts p.argp in wrapper functions that shouldn't
// be visible to recover(), so we need to restore it each iteration.
p.argp = add(p.startSP, sys.MinFrameSize)
for {
for p.deferBitsPtr != nil {
bits := *p.deferBitsPtr
// Check whether any open-coded defers are still pending.
//
// Note: We need to check this upfront (rather than after
// clearing the top bit) because it's possible that Goexit
// invokes a deferred call, and there were still more pending
// open-coded defers in the frame; but then the deferred call
// panic and invoked the remaining defers in the frame, before
// recovering and restarting the Goexit loop.
if bits == 0 {
p.deferBitsPtr = nil
break
}
// Find index of top bit set.
i := 7 - uintptr(sys.LeadingZeros8(bits))
// Clear bit and store it back.
bits &^= 1 << i
*p.deferBitsPtr = bits
return *(*func())(add(p.slotsPtr, i*goarch.PtrSize)), true
}
Recheck:
if d := gp._defer; d != nil && d.sp == uintptr(p.sp) {
if d.rangefunc {
deferconvert(d)
popDefer(gp)
goto Recheck
}
fn := d.fn
// TODO(mdempsky): Instead of having each deferproc call have
// its own "deferreturn(); return" sequence, we should just make
// them reuse the one we emit for open-coded defers.
p.retpc = d.pc
// Unlink and free.
popDefer(gp)
return fn, true
}
if !p.nextFrame() {
return nil, false
}
}
}
// nextFrame finds the next frame that contains deferred calls, if any.
func (p *_panic) nextFrame() (ok bool) {
if p.lr == 0 {
return false
}
gp := getg()
systemstack(func() {
var limit uintptr
if d := gp._defer; d != nil {
limit = d.sp
}
var u unwinder
u.initAt(p.lr, uintptr(p.fp), 0, gp, 0)
for {
if !u.valid() {
p.lr = 0
return // ok == false
}
// TODO(mdempsky): If we populate u.frame.fn.deferreturn for
// every frame containing a defer (not just open-coded defers),
// then we can simply loop until we find the next frame where
// it's non-zero.
if u.frame.sp == limit {
break // found a frame with linked defers
}
if p.initOpenCodedDefers(u.frame.fn, unsafe.Pointer(u.frame.varp)) {
break // found a frame with open-coded defers
}
u.next()
}
p.lr = u.frame.lr
p.sp = unsafe.Pointer(u.frame.sp)
p.fp = unsafe.Pointer(u.frame.fp)
ok = true
})
return
}
func (p *_panic) initOpenCodedDefers(fn funcInfo, varp unsafe.Pointer) bool {
fd := funcdata(fn, abi.FUNCDATA_OpenCodedDeferInfo)
if fd == nil {
return false
}
if fn.deferreturn == 0 {
throw("missing deferreturn")
}
deferBitsOffset, fd := readvarintUnsafe(fd)
deferBitsPtr := (*uint8)(add(varp, -uintptr(deferBitsOffset)))
if *deferBitsPtr == 0 {
return false // has open-coded defers, but none pending
}
slotsOffset, fd := readvarintUnsafe(fd)
p.retpc = fn.entry() + uintptr(fn.deferreturn)
p.deferBitsPtr = deferBitsPtr
p.slotsPtr = add(varp, -uintptr(slotsOffset))
return true
}