Skip to content

Commit 6130461

Browse files
committed
internal/testmath: add two-sample Welch's t-test for performance tests
This CL copies code from github.com/aclements/go-moremath/stats and github.com/aclements/go-moremath/mathx for Welch's t-test. Several existing tests in the Go repository check performance and scalability, and this import is part of a move toward a more rigorous measurement of both. Note that the copied code is already licensed to Go Authors, so there's no need to worry about additional licensing considerations. For #32986. Change-Id: I058630fab7216d1a589bb182b69fa2231e6f5475 Reviewed-on: https://go-review.googlesource.com/c/go/+/411395 Reviewed-by: Michael Pratt <mpratt@google.com>
1 parent 24b9039 commit 6130461

File tree

2 files changed

+217
-1
lines changed

2 files changed

+217
-1
lines changed

src/go/build/deps_test.go

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -543,7 +543,10 @@ var depsRules = `
543543
internal/fuzz, internal/testlog, runtime/pprof, regexp
544544
< testing/internal/testdeps;
545545
546-
OS, flag, testing, internal/cfg
546+
MATH, errors, testing
547+
< internal/testmath;
548+
549+
OS, flag, testing, internal/cfg, internal/testmath
547550
< internal/testenv;
548551
549552
OS, encoding/base64

src/internal/testmath/ttest.go

Lines changed: 213 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,213 @@
1+
// Copyright 2022 The Go Authors. All rights reserved.
2+
// Use of this source code is governed by a BSD-style
3+
// license that can be found in the LICENSE file.
4+
5+
package testmath
6+
7+
import (
8+
"errors"
9+
"math"
10+
)
11+
12+
// A TTestSample is a sample that can be used for a one or two sample
13+
// t-test.
14+
type TTestSample interface {
15+
Weight() float64
16+
Mean() float64
17+
Variance() float64
18+
}
19+
20+
var (
21+
ErrSampleSize = errors.New("sample is too small")
22+
ErrZeroVariance = errors.New("sample has zero variance")
23+
ErrMismatchedSamples = errors.New("samples have different lengths")
24+
)
25+
26+
// TwoSampleWelchTTest performs a two-sample (unpaired) Welch's t-test
27+
// on samples x1 and x2. This t-test does not assume the distributions
28+
// have equal variance.
29+
func TwoSampleWelchTTest(x1, x2 TTestSample, alt LocationHypothesis) (*TTestResult, error) {
30+
n1, n2 := x1.Weight(), x2.Weight()
31+
if n1 <= 1 || n2 <= 1 {
32+
// TODO: Can we still do this with n == 1?
33+
return nil, ErrSampleSize
34+
}
35+
v1, v2 := x1.Variance(), x2.Variance()
36+
if v1 == 0 && v2 == 0 {
37+
return nil, ErrZeroVariance
38+
}
39+
40+
dof := math.Pow(v1/n1+v2/n2, 2) /
41+
(math.Pow(v1/n1, 2)/(n1-1) + math.Pow(v2/n2, 2)/(n2-1))
42+
s := math.Sqrt(v1/n1 + v2/n2)
43+
t := (x1.Mean() - x2.Mean()) / s
44+
return newTTestResult(int(n1), int(n2), t, dof, alt), nil
45+
}
46+
47+
// A TTestResult is the result of a t-test.
48+
type TTestResult struct {
49+
// N1 and N2 are the sizes of the input samples. For a
50+
// one-sample t-test, N2 is 0.
51+
N1, N2 int
52+
53+
// T is the value of the t-statistic for this t-test.
54+
T float64
55+
56+
// DoF is the degrees of freedom for this t-test.
57+
DoF float64
58+
59+
// AltHypothesis specifies the alternative hypothesis tested
60+
// by this test against the null hypothesis that there is no
61+
// difference in the means of the samples.
62+
AltHypothesis LocationHypothesis
63+
64+
// P is p-value for this t-test for the given null hypothesis.
65+
P float64
66+
}
67+
68+
func newTTestResult(n1, n2 int, t, dof float64, alt LocationHypothesis) *TTestResult {
69+
dist := TDist{dof}
70+
var p float64
71+
switch alt {
72+
case LocationDiffers:
73+
p = 2 * (1 - dist.CDF(math.Abs(t)))
74+
case LocationLess:
75+
p = dist.CDF(t)
76+
case LocationGreater:
77+
p = 1 - dist.CDF(t)
78+
}
79+
return &TTestResult{N1: n1, N2: n2, T: t, DoF: dof, AltHypothesis: alt, P: p}
80+
}
81+
82+
// A LocationHypothesis specifies the alternative hypothesis of a
83+
// location test such as a t-test or a Mann-Whitney U-test. The
84+
// default (zero) value is to test against the alternative hypothesis
85+
// that they differ.
86+
type LocationHypothesis int
87+
88+
const (
89+
// LocationLess specifies the alternative hypothesis that the
90+
// location of the first sample is less than the second. This
91+
// is a one-tailed test.
92+
LocationLess LocationHypothesis = -1
93+
94+
// LocationDiffers specifies the alternative hypothesis that
95+
// the locations of the two samples are not equal. This is a
96+
// two-tailed test.
97+
LocationDiffers LocationHypothesis = 0
98+
99+
// LocationGreater specifies the alternative hypothesis that
100+
// the location of the first sample is greater than the
101+
// second. This is a one-tailed test.
102+
LocationGreater LocationHypothesis = 1
103+
)
104+
105+
// A TDist is a Student's t-distribution with V degrees of freedom.
106+
type TDist struct {
107+
V float64
108+
}
109+
110+
// PDF returns the value at x of the probability distribution function for the
111+
// distribution.
112+
func (t TDist) PDF(x float64) float64 {
113+
return math.Exp(lgamma((t.V+1)/2)-lgamma(t.V/2)) /
114+
math.Sqrt(t.V*math.Pi) * math.Pow(1+(x*x)/t.V, -(t.V+1)/2)
115+
}
116+
117+
// CDF returns the value at x of the cumulative distribution function for the
118+
// distribution.
119+
func (t TDist) CDF(x float64) float64 {
120+
if x == 0 {
121+
return 0.5
122+
} else if x > 0 {
123+
return 1 - 0.5*betaInc(t.V/(t.V+x*x), t.V/2, 0.5)
124+
} else if x < 0 {
125+
return 1 - t.CDF(-x)
126+
} else {
127+
return math.NaN()
128+
}
129+
}
130+
131+
func (t TDist) Bounds() (float64, float64) {
132+
return -4, 4
133+
}
134+
135+
func lgamma(x float64) float64 {
136+
y, _ := math.Lgamma(x)
137+
return y
138+
}
139+
140+
// betaInc returns the value of the regularized incomplete beta
141+
// function Iₓ(a, b) = 1 / B(a, b) * ∫₀ˣ tᵃ⁻¹ (1-t)ᵇ⁻¹ dt.
142+
//
143+
// This is not to be confused with the "incomplete beta function",
144+
// which can be computed as BetaInc(x, a, b)*Beta(a, b).
145+
//
146+
// If x < 0 or x > 1, returns NaN.
147+
func betaInc(x, a, b float64) float64 {
148+
// Based on Numerical Recipes in C, section 6.4. This uses the
149+
// continued fraction definition of I:
150+
//
151+
// (xᵃ*(1-x)ᵇ)/(a*B(a,b)) * (1/(1+(d₁/(1+(d₂/(1+...))))))
152+
//
153+
// where B(a,b) is the beta function and
154+
//
155+
// d_{2m+1} = -(a+m)(a+b+m)x/((a+2m)(a+2m+1))
156+
// d_{2m} = m(b-m)x/((a+2m-1)(a+2m))
157+
if x < 0 || x > 1 {
158+
return math.NaN()
159+
}
160+
bt := 0.0
161+
if 0 < x && x < 1 {
162+
// Compute the coefficient before the continued
163+
// fraction.
164+
bt = math.Exp(lgamma(a+b) - lgamma(a) - lgamma(b) +
165+
a*math.Log(x) + b*math.Log(1-x))
166+
}
167+
if x < (a+1)/(a+b+2) {
168+
// Compute continued fraction directly.
169+
return bt * betacf(x, a, b) / a
170+
} else {
171+
// Compute continued fraction after symmetry transform.
172+
return 1 - bt*betacf(1-x, b, a)/b
173+
}
174+
}
175+
176+
// betacf is the continued fraction component of the regularized
177+
// incomplete beta function Iₓ(a, b).
178+
func betacf(x, a, b float64) float64 {
179+
const maxIterations = 200
180+
const epsilon = 3e-14
181+
182+
raiseZero := func(z float64) float64 {
183+
if math.Abs(z) < math.SmallestNonzeroFloat64 {
184+
return math.SmallestNonzeroFloat64
185+
}
186+
return z
187+
}
188+
189+
c := 1.0
190+
d := 1 / raiseZero(1-(a+b)*x/(a+1))
191+
h := d
192+
for m := 1; m <= maxIterations; m++ {
193+
mf := float64(m)
194+
195+
// Even step of the recurrence.
196+
numer := mf * (b - mf) * x / ((a + 2*mf - 1) * (a + 2*mf))
197+
d = 1 / raiseZero(1+numer*d)
198+
c = raiseZero(1 + numer/c)
199+
h *= d * c
200+
201+
// Odd step of the recurrence.
202+
numer = -(a + mf) * (a + b + mf) * x / ((a + 2*mf) * (a + 2*mf + 1))
203+
d = 1 / raiseZero(1+numer*d)
204+
c = raiseZero(1 + numer/c)
205+
hfac := d * c
206+
h *= hfac
207+
208+
if math.Abs(hfac-1) < epsilon {
209+
return h
210+
}
211+
}
212+
panic("betainc: a or b too big; failed to converge")
213+
}

0 commit comments

Comments
 (0)