-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathreduction_kernel.cu
702 lines (539 loc) · 18.2 KB
/
reduction_kernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
/*
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
*
* This software contains source code provided by NVIDIA Corporation.
*
* Some significant generification modifications have been made.
*/
#ifndef IMPL__REDUCE_KERNEL_H
#define IMPL__REDUCE_KERNEL_H
namespace reductions {
// Utility class used to avoid linker errors with extern
// unsized shared memory arrays with templated type
template<class T>
struct SharedMemory {
__device__ inline operator T *() {
extern __shared__ int __smem[];
return (T *)__smem;
}
__device__ inline operator const T *() const {
extern __shared__ int __smem[];
return (T *)__smem;
}
};
// specialize for double to avoid unaligned memory
// access compile errors
template<>
struct SharedMemory<double> {
__device__ inline operator double *() {
extern __shared__ double __smem_d[];
return (double *)__smem_d;
}
__device__ inline operator const double *() const {
extern __shared__ double __smem_d[];
return (double *)__smem_d;
}
};
/*
Parallel sum reduction using shared memory
- takes log(n) steps for n input elements
- uses n threads
- only works for power-of-2 arrays
*/
/* This reduction interleaves which threads are active by using the modulo
operator. This operator is very expensive on GPUs, and the interleaved
inactivity means that no whole warps are active, which is also very
inefficient */
template <class T, typename InputIt, typename Computation>
__global__ void
reduce0(InputIt g_idata, T* g_odata, unsigned int n, Computation c) {
T* sdata = SharedMemory<T>();
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? c.transform(g_idata[i]) : c.identity();
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
// modulo arithmetic is slow!
if ((tid % (2*s)) == 0) {
sdata[tid] = c.reduce(sdata[tid], sdata[tid + s]);
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) *g_odata = sdata[0];
}
/* This version uses contiguous threads, but its interleaved
addressing results in many shared memory bank conflicts.
*/
template <class T>
__global__ void
reduce1(T* g_idata, T* g_odata, unsigned int n) {
T* sdata = SharedMemory<T>();
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads();
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;
if (index < blockDim.x) {
sdata[index] += sdata[index + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
/*
This version uses sequential addressing -- no divergence or bank conflicts.
*/
template <class T>
__global__ void
reduce2(T* g_idata, T* g_odata, unsigned int n) {
T* sdata = SharedMemory<T>();
// load shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;
sdata[tid] = (i < n) ? g_idata[i] : 0;
__syncthreads();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] += sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];
}
/*
This version uses n/2 threads --
it performs the first level of reduction when reading from global memory.
*/
template <class T>
__global__ void
reduce3(T* g_idata, T* g_odata, unsigned int n) {
T* sdata = SharedMemory<T>();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
T mySum = (i < n) ? g_idata[i] : 0;
if (i + blockDim.x < n)
mySum += g_idata[i+blockDim.x];
sdata[tid] = mySum;
__syncthreads();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdata[tid] = mySum = mySum + sdata[tid + s];
}
__syncthreads();
}
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = mySum;
}
/*
This version uses the warp shuffle operation if available to reduce
warp synchronization. When shuffle is not available the final warp's
worth of work is unrolled to reduce looping overhead.
See http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
for additional information about using shuffle to perform a reduction
within a warp.
Note, this kernel needs a minimum of 64*sizeof(T) bytes of shared memory.
In other words if blockSize <= 32, allocate 64*sizeof(T) bytes.
If blockSize > 32, allocate blockSize*sizeof(T) bytes.
*/
template <class T, unsigned int blockSize>
__global__ void
reduce4(T* g_idata, T* g_odata, unsigned int n) {
T* sdata = SharedMemory<T>();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockDim.x*2) + threadIdx.x;
T mySum = (i < n) ? g_idata[i] : 0;
if (i + blockSize < n)
mySum += g_idata[i+blockSize];
sdata[tid] = mySum;
__syncthreads();
// do reduction in shared mem
for (unsigned int s=blockDim.x/2; s>32; s>>=1) {
if (tid < s) {
sdata[tid] = mySum = mySum + sdata[tid + s];
}
__syncthreads();
}
#if (__CUDA_ARCH__ >= 300 )
if ( tid < 32 ) {
// Fetch final intermediate sum from 2nd warp
if (blockSize >= 64) mySum += sdata[tid + 32];
// Reduce final warp using shuffle
for (int offset = warpSize/2; offset > 0; offset /= 2) {
mySum += __shfl_down(mySum, offset);
}
}
#else
// fully unroll reduction within a single warp
if ((blockSize >= 64) && (tid < 32)) {
sdata[tid] = mySum = mySum + sdata[tid + 32];
}
__syncthreads();
if ((blockSize >= 32) && (tid < 16)) {
sdata[tid] = mySum = mySum + sdata[tid + 16];
}
__syncthreads();
if ((blockSize >= 16) && (tid < 8)) {
sdata[tid] = mySum = mySum + sdata[tid + 8];
}
__syncthreads();
if ((blockSize >= 8) && (tid < 4)) {
sdata[tid] = mySum = mySum + sdata[tid + 4];
}
__syncthreads();
if ((blockSize >= 4) && (tid < 2)) {
sdata[tid] = mySum = mySum + sdata[tid + 2];
}
__syncthreads();
if ((blockSize >= 2) && ( tid < 1)) {
sdata[tid] = mySum = mySum + sdata[tid + 1];
}
__syncthreads();
#endif
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = mySum;
}
/*
This version is completely unrolled, unless warp shuffle is available, then
shuffle is used within a loop. It uses a template parameter to achieve
optimal code for any (power of 2) number of threads. This requires a switch
statement in the host code to handle all the different thread block sizes at
compile time. When shuffle is available, it is used to reduce warp synchronization.
Note, this kernel needs a minimum of 64*sizeof(T) bytes of shared memory.
In other words if blockSize <= 32, allocate 64*sizeof(T) bytes.
If blockSize > 32, allocate blockSize*sizeof(T) bytes.
*/
template <class T, unsigned int blockSize>
__global__ void
reduce5(T* g_idata, T* g_odata, unsigned int n) {
T* sdata = SharedMemory<T>();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*(blockSize*2) + threadIdx.x;
T mySum = (i < n) ? g_idata[i] : 0;
if (i + blockSize < n)
mySum += g_idata[i+blockSize];
sdata[tid] = mySum;
__syncthreads();
// do reduction in shared mem
if ((blockSize >= 512) && (tid < 256)) {
sdata[tid] = mySum = mySum + sdata[tid + 256];
}
__syncthreads();
if ((blockSize >= 256) &&(tid < 128)) {
sdata[tid] = mySum = mySum + sdata[tid + 128];
}
__syncthreads();
if ((blockSize >= 128) && (tid < 64)) {
sdata[tid] = mySum = mySum + sdata[tid + 64];
}
__syncthreads();
#if (__CUDA_ARCH__ >= 300 )
if ( tid < 32 ) {
// Fetch final intermediate sum from 2nd warp
if (blockSize >= 64) mySum += sdata[tid + 32];
// Reduce final warp using shuffle
for (int offset = warpSize/2; offset > 0; offset /= 2) {
mySum += __shfl_down(mySum, offset);
}
}
#else
// fully unroll reduction within a single warp
if ((blockSize >= 64) && (tid < 32)) {
sdata[tid] = mySum = mySum + sdata[tid + 32];
}
__syncthreads();
if ((blockSize >= 32) && (tid < 16)) {
sdata[tid] = mySum = mySum + sdata[tid + 16];
}
__syncthreads();
if ((blockSize >= 16) && (tid < 8)) {
sdata[tid] = mySum = mySum + sdata[tid + 8];
}
__syncthreads();
if ((blockSize >= 8) && (tid < 4)) {
sdata[tid] = mySum = mySum + sdata[tid + 4];
}
__syncthreads();
if ((blockSize >= 4) && (tid < 2)) {
sdata[tid] = mySum = mySum + sdata[tid + 2];
}
__syncthreads();
if ((blockSize >= 2) && ( tid < 1)) {
sdata[tid] = mySum = mySum + sdata[tid + 1];
}
__syncthreads();
#endif
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = mySum;
}
/*
This version adds multiple elements per thread sequentially. This reduces the overall
cost of the algorithm while keeping the work complexity O(n) and the step complexity O(log n).
(Brent's Theorem optimization)
Note, this kernel needs a minimum of 64*sizeof(T) bytes of shared memory.
In other words if blockSize <= 32, allocate 64*sizeof(T) bytes.
If blockSize > 32, allocate blockSize*sizeof(T) bytes.
*/
template <class T, unsigned int blockSize, bool nIsPow2, typename InputIt, typename Computation>
__global__ void
reduce6(InputIt g_idata, T* g_odata, unsigned int n, Computation c) {
T* sdata = SharedMemory<T>();
// perform first level of reduction,
// reading from global memory, writing to shared memory
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockSize*2 + threadIdx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
T mySum = c.identity();
// we reduce multiple elements per thread. The number is determined by the
// number of active thread blocks (via gridDim). More blocks will result
// in a larger gridSize and therefore fewer elements per thread
while (i < n) {
mySum = c.reduce(mySum, c.transform(g_idata[i]));
// ensure we don't read out of bounds -- this is optimized away for powerOf2 sized arrays
if (nIsPow2 || i + blockSize < n)
mySum = c.reduce(mySum, c.transform(g_idata[i+blockSize]));
i += gridSize;
}
// each thread puts its local sum into shared memory
sdata[tid] = mySum;
__syncthreads();
// do reduction in shared mem
if ((blockSize >= 512) && (tid < 256)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 256]);
}
__syncthreads();
if ((blockSize >= 256) &&(tid < 128)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 128]);
}
__syncthreads();
if ((blockSize >= 128) && (tid < 64)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 64]);
}
__syncthreads();
#if (__CUDA_ARCH__ >= 300 )
if ( tid < 32 ) {
// Fetch final intermediate sum from 2nd warp
if (blockSize >= 64) mySum = c.reduce(mySum, sdata[tid + 32]);
// Reduce final warp using shuffle
for (int offset = warpSize/2; offset > 0; offset /= 2) {
mySum = c.reduce(mySum, __shfl_down(mySum, offset));
}
}
#else
// fully unroll reduction within a single warp
if ((blockSize >= 64) && (tid < 32)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 32]);
}
__syncthreads();
if ((blockSize >= 32) && (tid < 16)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 16]);
}
__syncthreads();
if ((blockSize >= 16) && (tid < 8)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 8]);
}
__syncthreads();
if ((blockSize >= 8) && (tid < 4)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 4]);
}
__syncthreads();
if ((blockSize >= 4) && (tid < 2)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 2]);
}
__syncthreads();
if ((blockSize >= 2) && ( tid < 1)) {
sdata[tid] = mySum = c.reduce(mySum, sdata[tid + 1]);
}
__syncthreads();
#endif
// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = mySum;
}
extern "C"
bool isPow2(unsigned int x) {
return ((x&(x-1))==0);
}
////////////////////////////////////////////////////////////////////////////////
// Wrapper function for kernel launch
////////////////////////////////////////////////////////////////////////////////
// template <class T>
// void
// reduce(int size, int threads, int blocks,
// int whichKernel, T* d_idata, T* d_odata) {
// dim3 dimBlock(threads, 1, 1);
// dim3 dimGrid(blocks, 1, 1);
// // when there is only one warp per block, we need to allocate two warps
// // worth of shared memory so that we don't index shared memory out of bounds
// int smemSize = (threads <= 32) ? 2 * threads * sizeof(T) : threads * sizeof(T);
// // choose which of the optimized versions of reduction to launch
// switch (whichKernel) {
// case 0:
// reduce0<T><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 1:
// reduce1<T><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 2:
// reduce2<T><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 3:
// reduce3<T><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 4:
// switch (threads) {
// case 512:
// reduce4<T, 512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 256:
// reduce4<T, 256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 128:
// reduce4<T, 128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 64:
// reduce4<T, 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 32:
// reduce4<T, 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 16:
// reduce4<T, 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 8:
// reduce4<T, 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 4:
// reduce4<T, 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 2:
// reduce4<T, 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 1:
// reduce4<T, 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// }
// break;
// case 5:
// switch (threads) {
// case 512:
// reduce5<T, 512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 256:
// reduce5<T, 256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 128:
// reduce5<T, 128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 64:
// reduce5<T, 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 32:
// reduce5<T, 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 16:
// reduce5<T, 16><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 8:
// reduce5<T, 8><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 4:
// reduce5<T, 4><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 2:
// reduce5<T, 2><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 1:
// reduce5<T, 1><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// }
// break;
// case 6:
// default:
// if (isPow2(size)) {
// switch (threads) {
// case 512:
// reduce6<T, 512, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 256:
// reduce6<T, 256, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 128:
// reduce6<T, 128, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 64:
// reduce6<T, 64, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 32:
// reduce6<T, 32, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 16:
// reduce6<T, 16, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 8:
// reduce6<T, 8, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 4:
// reduce6<T, 4, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 2:
// reduce6<T, 2, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 1:
// reduce6<T, 1, true><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// }
// }
// else {
// switch (threads) {
// case 512:
// reduce6<T, 512, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 256:
// reduce6<T, 256, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 128:
// reduce6<T, 128, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 64:
// reduce6<T, 64, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 32:
// reduce6<T, 32, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 16:
// reduce6<T, 16, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 8:
// reduce6<T, 8, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 4:
// reduce6<T, 4, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 2:
// reduce6<T, 2, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// case 1:
// reduce6<T, 1, false><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata, size);
// break;
// }
// }
// break;
// }
// }
} // end namespace reductions
#endif // #ifndef IMPL__REDUCE_KERNEL_H