forked from google/gofountain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ru10.go
210 lines (181 loc) · 7.06 KB
/
ru10.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package fountain
import (
"math"
"math/rand"
"sort"
)
// The RU10 fountain is an unsystematic(*) fountain code which uses a degree
// distribution and intermediate block generation scheme similar to the
// R10 (Raptor) code. The unsystematic code has much lower independent block
// generation setup cost -- it requires only generating the auxiliary blocks,
// and does not require the full decode run of the algorithm to generate the
// intermediate encoding. This makes it cheaper in two ways for parallel
// execution. If all receivers can be expected to have the decoder in place,
// there is no decoding advantage to requiring the source blocks to appear in the
// code block set. But more to the point, if multiple encoders are working from
// the same source blocks, they can generate code blocks independently without
// having to worry if they are re-transmitting source blocks. Since the encoder
// state is cheaper and code blocks interchangeable, we sacrifice a little
// performance for that parallelizability and statelessness. We also gain a little
// in that this encoder variant needn't rely on the systematic number table
// of the R10 codec, and without that constraint, the number of possible code block
// ESI IDs is basically unlimited.
//
// (*) Well, not by design at least.
// This triple generator uses the Mersenne Twister to generate random seeds.
// k is the number of source symbols.
// x is the (random) code symbol ID.
// The generator creates values (d, a, b) to be used in constructing intermediate blocks.
func ru10TripleGenerator(k int, x int64) (int, uint32, uint32) {
l, _, _ := intermediateSymbols(k)
lprime := smallestPrimeGreaterOrEqual(l)
// TODO(gbillock): nudge x as a function of k to get better overhead-failure curve?
rand := rand.New(NewMersenneTwister64(x))
v := uint32(rand.Int63() % 1048576)
a := uint32(1 + (rand.Int63() % int64(lprime - 1)))
b := uint32(rand.Int63() % int64(lprime))
d := deg(v)
return d, a, b
}
// ru10Codec implements the Raptor-alike fountain code.
// Implements fountain.Codec.
type ru10Codec struct {
numSourceSymbols int
symbolAlignmentSize int
}
// NewRU10Codec creates an unsystematic raptor-like fountain codec which uses an
// intermediate block generation algorithm similar to the Raptor R10 codec.
func NewRU10Codec(numSourceSymbols int, symbolAlignmentSize int) Codec {
return &ru10Codec{
numSourceSymbols: numSourceSymbols,
symbolAlignmentSize: symbolAlignmentSize}
}
// SourceBlocks returns the number of source blocks the codec uses in the
// source message plus intermediate blocks added.
func (c *ru10Codec) SourceBlocks() int {
return c.numSourceSymbols
}
// PickIndices uses the R10 distribution function to pick indices. It gets
// numbers from the triple generator.
func (c *ru10Codec) PickIndices(codeBlockIndex int64) []int {
d, a, b := ru10TripleGenerator(c.numSourceSymbols, codeBlockIndex)
l, _, _ := intermediateSymbols(c.numSourceSymbols)
lprime := uint32(smallestPrimeGreaterOrEqual(l))
if d > l {
d = l
}
indices := make([]int, 0)
for b >= uint32(l) {
b = (b + a) % lprime
}
indices = append(indices, int(b))
for j := 1; j < d; j++ {
b = (b + a) % lprime
for b >= uint32(l) {
b = (b + a) % lprime
}
indices = append(indices, int(b))
}
sort.Ints(indices)
return indices
}
// RU10 intermediate encoding consists of the source symbols plus additional
// intermediate symbols consisting of exactly the S and H blocks the R10 code
// uses. The difference is that the code is unsystematic -- the source blocks
// aren't necessarily going to be represented at the output -- so when we do
// the decode we don't need to translate from the intermediate symbols back to
// the source symbols: the source symbols are just the first K intermediate symbols.
func (c *ru10Codec) GenerateIntermediateBlocks(message []byte, numBlocks int) []block {
sourceLong, sourceShort := partitionBytes(message, c.numSourceSymbols)
source := equalizeBlockLengths(sourceLong, sourceShort)
_, s, h := intermediateSymbols(c.numSourceSymbols)
k := c.numSourceSymbols
compositions := make([][]int, s)
for i := 0; i < k; i++ {
a := 1 + (int(math.Floor(float64(i)/float64(s))) % (s - 1))
b := i % s
compositions[b] = append(compositions[b], i)
b = (b + a) % s
compositions[b] = append(compositions[b], i)
b = (b + a) % s
compositions[b] = append(compositions[b], i)
}
for i := 0; i < s; i++ {
b := generateLubyTransformBlock(source, compositions[i])
source = append(source, b)
}
hprime := int(math.Ceil(float64(h) / 2))
m := buildGraySequence(k+s, hprime)
for i := 0; i < h; i++ {
hcomposition := make([]int, 0)
for j := 0; j < k+s; j++ {
if bitSet(uint(m[j]), uint(i)) {
hcomposition = append(hcomposition, j)
}
}
b := generateLubyTransformBlock(source, hcomposition)
source = append(source, b)
}
return source
}
// NewDecoder creates a new RU10 decoder
func (c *ru10Codec) NewDecoder(messageLength int) Decoder {
return newRU10Decoder(c, messageLength)
}
// ru10Decoder is the corresponding decoder for fountain codes using the RU10 encoder.
type ru10Decoder struct {
decoder *raptorDecoder
}
// newRU10Decoder creates a new raptor decoder for a given message. The
// codec supplied must be the same one as the message was encoded with.
func newRU10Decoder(c *ru10Codec, length int) *ru10Decoder {
return &ru10Decoder{
decoder: newRaptorDecoder(&raptorCodec{
SymbolAlignmentSize: c.symbolAlignmentSize,
NumSourceSymbols: c.numSourceSymbols},
length),
}
}
func (d *ru10Decoder) AddBlocks(blocks []LTBlock) bool {
c := ru10Codec{
symbolAlignmentSize: d.decoder.codec.SymbolAlignmentSize,
numSourceSymbols: d.decoder.codec.NumSourceSymbols}
for i := range blocks {
indices := c.PickIndices(blocks[i].BlockCode)
d.decoder.matrix.addEquation(indices, block{data: blocks[i].Data})
}
return d.decoder.matrix.determined()
}
func (d *ru10Decoder) Decode() []byte {
if !d.decoder.matrix.determined() {
return nil
}
d.decoder.matrix.reduce()
// Now the intermediate blocks are held in d.decoder.matrix.v. The source
// blocks are the first K intermediate blocks.
intermediate := d.decoder.matrix.v
lenLong, lenShort, numLong, numShort :=
partition(d.decoder.messageLength, d.decoder.codec.NumSourceSymbols)
out := make([]byte, d.decoder.messageLength)
out = out[0:0]
for i := 0; i < numLong; i++ {
out = append(out, intermediate[i].data[0:lenLong]...)
}
for i := numLong; i < numLong+numShort; i++ {
out = append(out, intermediate[i].data[0:lenShort]...)
}
return out
}