forked from merlresearch/InSeGAN-ICCV2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Hologan.py
387 lines (321 loc) · 12.5 KB
/
Hologan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/env python3
# Copyright (c) 2021,2022 Mitsubishi Electric Research Laboratories (MERL)
# Copyright (c) 2019, Christopher Beckham
#
# SPDX-License-Identifier: AGPL-3.0-or-later
# SPDX-License-Identifier: BSD-3-Clause
import torch
from torch import nn
import numpy as np
from torch.nn import functional as F
import torchgeometry as tgm
class HoloTrans():
#def __init__(self, angles=[-90,90,-180,180,-90,90], *args, **kwargs):
def __init__(self, angles=[-20,20,-180,180,-20,20], *args, **kwargs):
super(HoloTrans, self).__init__(*args, **kwargs)
self.angles = self._angles_to_dict(angles)
self.rot2idx = {
'x': 0,
'y': 1,
'z': 2
}
def _to_radians(self, deg):
return deg * (np.pi / 180)
def _angles_to_dict(self, angles):
angles = {
'min_angle_x': self._to_radians(angles[0]),
'max_angle_x': self._to_radians(angles[1]),
'min_angle_y': self._to_radians(angles[2]),
'max_angle_y': self._to_radians(angles[3]),
'min_angle_z': self._to_radians(angles[4]),
'max_angle_z': self._to_radians(angles[5])
}
return angles
def rot_matrix_x(self, theta):
"""
theta: measured in radians
"""
mat = np.zeros((3,3)).astype(np.float32)
mat[0, 0] = 1.
mat[1, 1] = np.cos(theta)
mat[1, 2] = -np.sin(theta)
mat[2, 1] = np.sin(theta)
mat[2, 2] = np.cos(theta)
return mat
def rot_matrix_y(self, theta):
"""
theta: measured in radians
"""
mat = np.zeros((3,3)).astype(np.float32)
mat[0, 0] = np.cos(theta)
mat[0, 2] = np.sin(theta)
mat[1, 1] = 1.
mat[2, 0] = -np.sin(theta)
mat[2, 2] = np.cos(theta)
return mat
def rot_matrix_z(self, theta):
"""
theta: measured in radians
"""
mat = np.zeros((3,3)).astype(np.float32)
mat[0, 0] = np.cos(theta)
mat[0, 1] = -np.sin(theta)
mat[1, 0] = np.sin(theta)
mat[1, 1] = np.cos(theta)
mat[2, 2] = 1.
return mat
def pad_rotmat(self, theta):
"""theta = (3x3) rotation matrix"""
return np.hstack((theta, np.zeros((3,1))))
def sample_angles(self,
bs,
min_angle_x,
max_angle_x,
min_angle_y,
max_angle_y,
min_angle_z,
max_angle_z):
"""Sample random yaw, pitch, and roll angles"""
angles = []
for i in range(bs):
rnd_angles = [
np.random.uniform(min_angle_x, max_angle_x),
np.random.uniform(min_angle_y, max_angle_y),
np.random.uniform(min_angle_z, max_angle_z),
]
angles.append(rnd_angles)
return np.asarray(angles)
def get_theta(self, angles):
'''Construct a rotation matrix from angles.
This uses the Euler angle representation. But
it should also work if you use an axis-angle
representation.
'''
bs = len(angles)
theta = np.zeros((bs, 3, 4))
angles_x = angles[:, 0]
angles_y = angles[:, 1]
angles_z = angles[:, 2]
for i in range(bs):
theta[i] = self.pad_rotmat(
np.dot(np.dot(self.rot_matrix_z(angles_z[i]), self.rot_matrix_y(angles_y[i])),
self.rot_matrix_x(angles_x[i]))
)
theta[i,:,3] = (np.random.rand(3,)-0.5)/2.
return torch.from_numpy(theta).float()
def sample(self, bs, seed=None):
"""Return a sample G(z)"""
self._eval()
with torch.no_grad():
z_batch = self.sample_z(bs, seed=seed)
angles = self.sample_angles(z_batch.size(0),
**self.angles)
thetas = self.get_theta(angles)
if z_batch.is_cuda:
thetas = thetas.cuda()
gz = self.g(z_batch, thetas)
return gz
def _generate_rotations(self,
z_batch,
axes=['x', 'y', 'z'],
min_angle=None,
max_angle=None,
num=5):
dd = dict()
for rot_mode in axes:
if min_angle is None:
min_angle = self.angles['min_angle_%s' % rot_mode]
if max_angle is None:
max_angle = self.angles['max_angle_%s' % rot_mode]
pbuf = []
with torch.no_grad():
for p in np.linspace(min_angle, max_angle, num=num):
#enc_rot = gan.rotate_random(enc, angle=p)
angles = np.zeros((z_batch.size(0), 3)).astype(np.float32)
angles[:, self.rot2idx[rot_mode]] += p
thetas = self.get_theta(angles)
if z_batch.is_cuda:
thetas = thetas.cuda()
x_fake = self.g(z_batch, thetas)
pbuf.append(x_fake*0.5 + 0.5)
dd[rot_mode] = pbuf
return dd
def sample_transforms(self, bs):
angles = self.sample_angles(bs, **self.angles)
thetas = self.get_theta(angles)
#angles_t = torch.from_numpy(angles).float().cuda()
return thetas
class ResBlock2d(nn.Module):
def __init__(self, in_ch, out_ch):
super(ResBlock2d, self).__init__()
self.conv1 = nn.Conv2d(in_ch, out_ch, 3, 1, padding=1)
self.conv2 = nn.Conv2d(out_ch, out_ch, 3, 1, padding=1)
self.bn = nn.InstanceNorm2d(in_ch)
self.relu = nn.LeakyReLU()
self.bn2 = nn.InstanceNorm2d(out_ch)
nn.init.xavier_uniform_(self.conv1.weight.data, 1.)
nn.init.xavier_uniform_(self.conv2.weight.data, 1.)
bypass = []
if in_ch != out_ch:
bypass.append(nn.Conv2d(in_ch, out_ch, 1, 1))
self.bypass = nn.Sequential(*bypass)
def forward(self, inp):
x = self.bn(inp)
x = self.relu(x)
x = self.conv1(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv2(x)
return x + self.bypass(inp)
class ResBlock3d(nn.Module):
def __init__(self, in_ch, out_ch):
super(ResBlock3d, self).__init__()
self.conv1 = nn.Conv3d(in_ch, out_ch, 3, 1, padding=1)
self.conv2 = nn.Conv3d(out_ch, out_ch, 3, 1, padding=1)
self.bn = nn.InstanceNorm3d(in_ch)
self.relu = nn.LeakyReLU()
self.bn2 = nn.InstanceNorm3d(out_ch)
nn.init.xavier_uniform_(self.conv1.weight.data, 1.)
nn.init.xavier_uniform_(self.conv2.weight.data, 1.)
bypass = []
if in_ch != out_ch:
bypass.append(nn.Conv3d(in_ch, out_ch, 1, 1))
self.bypass = nn.Sequential(*bypass)
def forward(self, inp):
x = self.bn(inp)
x = self.relu(x)
x = self.conv1(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv2(x)
return x + self.bypass(inp)
def _adain_module_3d(z_dim, out_ch):
adain = nn.InstanceNorm3d(out_ch, affine=True)
z_mlp = nn.Sequential(
nn.Linear(z_dim, out_ch*2), # both var and mean
)
return adain, z_mlp
def _adain_module_2d(z_dim, out_ch):
adain = nn.InstanceNorm2d(out_ch, affine=True)
z_mlp = nn.Linear(z_dim, out_ch*2)
return adain, z_mlp
class HoloNet(nn.Module):
def __init__(self, nf, out_ch=3, z_dim=128):
super(HoloNet, self).__init__()
self.ups_3d = nn.Upsample(scale_factor=2, mode='nearest')
self.ups_2d = nn.Upsample(scale_factor=2, mode='nearest')
self.angle_select = torch.tensor([0,1,2]).cuda()
self.trans_select = torch.tensor([3,4,5]).cuda()
self.z_dim = z_dim
# pose encoder.
self.pe = nn.Sequential(
nn.Linear(z_dim, z_dim//2, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(z_dim//2, z_dim//4, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(z_dim//4, 6, bias=False)
)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
nn.init.xavier_uniform_(m.weight.data, 1.)
self.pe.apply(weights_init)
xstart = ( torch.randn((1, nf, 4, 4, 4)) - 0.5 ) / 0.5
nn.init.xavier_uniform_(xstart.data, 1.)
self.xstart = nn.Parameter(xstart)
self.xstart.requires_grad = True
self.nf = nf
self.rb1 = ResBlock3d(nf, nf // 2)
self.adain_1, self.z_mlp1 = _adain_module_3d(z_dim, nf//2)
self.rb2 = ResBlock3d(nf // 2, nf // 4)
self.adain_2, self.z_mlp2 = _adain_module_3d(z_dim, nf//4)
# The 3d transformation is done here.
# Two convs (no adain) that bring it from nf//4 to nf//8
self.postproc = nn.Sequential(
nn.Conv3d(nf//4, nf//8, kernel_size=3, padding=1),
nn.InstanceNorm3d(nf//8, affine=True),
nn.ReLU(),
nn.Conv3d(nf//8, nf//8, kernel_size=3, padding=1),
nn.InstanceNorm3d(nf//8, affine=True),
nn.ReLU()
)
# Then concatenation happens.
pnf = (nf//8)*(4**2) # 512
# TODO: should be 1x1
self.proj = nn.Sequential(
nn.Conv2d(pnf, pnf, kernel_size=3, padding=1),
nn.InstanceNorm2d(pnf, affine=True),
nn.ReLU()
)
self.tanh = nn.Tanh()
self.im = 64
def interpolate_trilinear(self, img, x, y, z):
x0 = torch.floor(x).long()
x1 = x0 + 1
y0 = torch.floor(y).long()
y1 = y0 + 1
z0 = torch.floor(z).long()
z1 = z0 + 1
x0 = torch.clamp(x0, min=0, max=img.shape[2] - 1)
x1 = torch.clamp(x1, min=0, max=img.shape[2] - 1)
y0 = torch.clamp(y0, min=0, max=img.shape[3] - 1)
y1 = torch.clamp(y1, min=0, max=img.shape[3] - 1)
z0 = torch.clamp(z0, min=0, max=img.shape[4] - 1)
z1 = torch.clamp(z1, min=0, max=img.shape[4] - 1)
x_ = x - x0.float()
y_ = y - y0.float()
z_ = z - z0.float()
out = (img[:,:,x0,y0,z0]*(1-x_)*(1-y_)*(1-z_) +
img[:,:,x1,y0,z0]*x_*(1-y_)*(1-z_) +
img[:,:,x0,y1,z0]*(1-x_)*y_*(1-z_) +
img[:,:,x0,y0,z1]*(1-x_)*(1-y_)*z_ +
img[:,:,x1,y0,z1]*x_*(1-y_)*z_ +
img[:,:,x0,y1,z1]*(1-x_)*y_*z_ +
img[:,:,x1,y1,z0]*x_*y_*(1-z_) +
img[:,:,x1,y1,z1]*x_*y_*z_)
return out
def stn(self, x, theta):
grid = F.affine_grid(theta, x.size(), align_corners=True)
out = F.grid_sample(x, grid, padding_mode='zeros', align_corners=True)
return out
def _rshp2d(self, z):
return z.view(-1, z.size(1), 1, 1)
def _rshp3d(self, z):
return z.view(-1, z.size(1), 1, 1, 1)
def _split(self, z):
len_ = z.size(1)
mean = z[:, 0:(len_//2)]
var = F.softplus(z[:, (len_//2):])
return mean, var
def compute_rot_matrix_by_qr_factorization(self, theta):
theta = theta.reshape(-1,3,3)
rot, triu = torch.qr(theta)
return rot, triu
def get_implicit_pose(self, z):
pz = self.pe(z)
theta = torch.index_select(pz, 1, self.angle_select)
trans = torch.index_select(pz, 1, self.trans_select)
rot = tgm.angle_axis_to_rotation_matrix(theta)
rot = torch.index_select(torch.index_select(rot, 1, self.angle_select), 2, self.angle_select)
return torch.cat([rot, trans.unsqueeze(2)], 2)
def forward(self, z): #, thetas):#forward(self, z, thetas):
if len(z.shape) == 4:
z = z.squeeze(2).squeeze(2)
thetas = self.get_implicit_pose(z)
bs = len(thetas)#z.size(0)
# (512, 4, 4, 4)
xstart = self.xstart.repeat((bs, 1, 1, 1, 1))
# (256, 8, 8, 8)
h1 = self.adain_1(self.ups_3d(self.rb1(xstart)))
# (128, 16, 16, 16)
h2 = self.adain_2(self.ups_3d(self.rb2(h1)))
# Perform rotation
h2_rotated = self.stn(h2, thetas)
# (64, 16, 16, 16)
h4 = self.postproc(h2_rotated)
# Projection unit. Concat depth and channels
# (32*16, 16, 16) = (512, 16, 16)
h4_proj = h4.view(-1, h4.size(1)*h4.size(2), h4.size(3), h4.size(4))
# (256, 16, 16) (TODO: this should be a 1x1 conv)
h4_proj = self.proj(h4_proj)
return h4_proj