-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaffine_transform.py
81 lines (65 loc) · 2.93 KB
/
affine_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import torch
import numpy as np
from torch import Tensor
def tensor2cv2(image: Tensor) -> np.ndarray:
img = np.clip(255. * image.cpu().numpy().squeeze(), 0, 255).astype(np.uint8)
if img.ndim == 3 and img.shape[0] == 3:
img = np.transpose(img, (1, 2, 0))
return img
def cv22tensor(image: np.ndarray) -> torch.Tensor:
image = image.astype(np.float32) / 255.0
if image.ndim == 3 and image.shape[0] == 3:
tensor = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0)
else:
tensor = torch.from_numpy(image).unsqueeze(0)
return tensor
class AffineTransform:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"rect_x1": ("INT",),
"rect_y1": ("INT",),
"rect_x2": ("INT",),
"rect_y2": ("INT",),
"rect_x3": ("INT",),
"rect_y3": ("INT",),
"rect_x4": ("INT",),
"rect_y4": ("INT",),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "transform"
CATEGORY = "image/"
def transform(self, image, rect_x1, rect_y1, rect_x2, rect_y2, rect_x3, rect_y3, rect_x4, rect_y4):
image = tensor2cv2(image)
# x1, y1 = 0, 0 # Top-left corner of the ROI
# x2, y2 = image.shape[:2] # Bottom-right corner of the ROI
# roi = image[y1:y2, x1:x2]
# # Resize the selected part (ROI)
# new_size = (zoom_rate * x2, zoom_rate * y2) # New width and height for the ROI
# resized_roi = cv2.resize(roi, new_size)
# # Create a mask for the resized part
# mask = np.zeros_like(image)
# mask[y1:y1+new_size[1], x1:x1+new_size[0]] = resized_roi
# # Define the translation matrix to move the resized part to a new location
# dx, dy = pos_x, pos_y # Move the resized part to (x1 + dx, y1 + dy)
# translation_matrix = np.float32([[1, 0, dx], [0, 1, dy]])
# # Apply the translation (move the resized part)
# moved_image = cv2.warpAffine(mask, translation_matrix, (image.shape[1], image.shape[0]))
# # Combine the original image and the translated, resized part
# # Use bitwise operations to combine the images
# final_image = cv2.bitwise_or(image, moved_image)
# Apply perspective transformation (if needed)
# Define points for perspective transformation
height, width = image.shape[:2]
pts1 = np.float32([[0, 0], [width, 0], [0, height], [width, height]])
pts2 = np.float32([[rect_x1, rect_y1], [rect_x2, rect_y2],
[rect_x3, rect_y3], [rect_x4, rect_y4]])
# Get the perspective transformation matrix
M = cv2.getPerspectiveTransform(pts1, pts2)
# Apply the perspective transformation
rotated_image = cv2.warpPerspective(image, M, (width, height))
return (cv22tensor(rotated_image),)