-
Notifications
You must be signed in to change notification settings - Fork 7
/
data_test.py
105 lines (91 loc) · 3.93 KB
/
data_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
# Copyright 2022 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for data."""
import functools
from absl.testing import absltest
from absl.testing import parameterized
import chex
import numpy as np
import tensorflow_datasets as tfds
import data as cpdata
DATA_DIR = './data/'
class DataTest(parameterized.TestCase):
@parameterized.parameters([
dict(dataset='mnist', train_examples=60000, val_examples=10000),
dict(dataset='mnist', train_examples=60000, val_examples=0),
])
def test_load_data_split_sizes(self, dataset, train_examples, val_examples):
data = cpdata.load_data_split(
dataset, val_examples=val_examples, data_dir=DATA_DIR)
ds_sizes = data['sizes']
self.assertLen(data['train'], train_examples - val_examples)
self.assertLen(data['test'], 10000)
self.assertEqual(ds_sizes['train'], train_examples - val_examples)
self.assertEqual(ds_sizes['val'], val_examples)
self.assertEqual(ds_sizes['test'], 10000)
if val_examples > 0:
self.assertLen(data['val'], val_examples)
else:
self.assertIsNone(data['val'])
def test_load_data_split_errors(self):
with self.assertRaises(ValueError):
cpdata.load_data_split('mnist', val_examples=-1, data_dir=DATA_DIR)
@parameterized.parameters([
dict(batch_size=128),
])
def test_load_batches(self, batch_size):
val_examples = 59500
train_examples = 60000 - val_examples
data = cpdata.load_data_split(
'mnist', val_examples=val_examples, data_dir=DATA_DIR)
data['train'] = data['train'].batch(batch_size)
b = 0
for b, (inputs, labels) in enumerate(cpdata.load_batches(data['train'])):
chex.assert_rank([inputs, labels], [4, 1])
# Batch size might be smaller for the last batch!
if b == 0:
chex.assert_shape(inputs, (batch_size, 28, 28, 1))
chex.assert_shape(labels, (batch_size,))
# For MNIST, the scaling has to happen manually.
self.assertGreaterEqual(255, np.max(inputs))
self.assertGreaterEqual(np.max(inputs), 0)
self.assertGreaterEqual(9, np.max(labels))
self.assertEqual(b + 1, np.ceil(train_examples/batch_size))
# Testing all will cause a timeout, so just testing autoaugment
# from now on as that's the most complex augmentation.
@parameterized.parameters([
dict(augmentation_name='augment_flip_crop', augmentation_args=dict(
shape=(32, 32, 3), crop=4, mode='CONSTANT', replace=121)),
dict(augmentation_name='augment_autoaugment',
augmentation_args=dict(shape=(32, 32, 3), replace=121)),
dict(augmentation_name='augment_cutout',
augmentation_args=dict(replace=121, pad=8)),
])
def test_augment(self, augmentation_name, augmentation_args):
batch_size = 100
# Not using cpdata.load_data_split to avoid timeouts.
ds = tfds.load(
'cifar10', split='train[:1000]', with_info=False, data_dir=DATA_DIR)
augmentation = getattr(cpdata, augmentation_name, None)
self.assertIsNotNone(augmentation)
augmentation = functools.partial(augmentation, **augmentation_args)
ds = ds.map(augmentation).batch(batch_size)
for inputs, _ in cpdata.load_batches(ds):
chex.assert_shape(inputs, (batch_size, 32, 32, 3))
self.assertGreaterEqual(255, np.max(inputs))
self.assertGreaterEqual(np.max(inputs), 0)
break
if __name__ == '__main__':
absltest.main()