This repository has been archived by the owner on Aug 1, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathlong.js
902 lines (806 loc) · 27.7 KB
/
long.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
* integer value, which faithfully simulates the behavior of a Java "long". This
* implementation is derived from LongLib in GWT.
*/
goog.module('goog.math.Long');
goog.module.declareLegacyNamespace();
const asserts = goog.require('goog.asserts');
const reflect = goog.require('goog.reflect');
/**
* Represents a 64-bit two's-complement integer, given its low and high 32-bit
* values as *signed* integers. See the from* functions below for more
* convenient ways of constructing Longs.
*
* The internal representation of a long is the two given signed, 32-bit values.
* We use 32-bit pieces because these are the size of integers on which
* JavaScript performs bit-operations. For operations like addition and
* multiplication, we split each number into 16-bit pieces, which can easily be
* multiplied within JavaScript's floating-point representation without overflow
* or change in sign.
*
* In the algorithms below, we frequently reduce the negative case to the
* positive case by negating the input(s) and then post-processing the result.
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
* a positive number, it overflows back into a negative). Not handling this
* case would often result in infinite recursion.
* @final
*/
class Long {
/**
* @param {number} low The low (signed) 32 bits of the long.
* @param {number} high The high (signed) 32 bits of the long.
*/
constructor(low, high) {
/**
* @const {number}
* @private
*/
this.low_ = low | 0; // force into 32 signed bits.
/**
* @const {number}
* @private
*/
this.high_ = high | 0; // force into 32 signed bits.
}
/** @return {number} The value, assuming it is a 32-bit integer. */
toInt() {
return this.low_;
}
/**
* @return {number} The closest floating-point representation to this value.
*/
toNumber() {
return this.high_ * TWO_PWR_32_DBL_ + this.getLowBitsUnsigned();
}
/**
* @return {boolean} if can be exactly represented using number (i.e.
* abs(value) < 2^53).
*/
isSafeInteger() {
var top11Bits = this.high_ >> 21;
// If top11Bits are all 0s, then the number is between [0, 2^53-1]
return top11Bits == 0
// If top11Bits are all 1s, then the number is between [-1, -2^53]
|| (top11Bits == -1
// and exclude -2^53
&& !(this.low_ == 0 && this.high_ == (0xffe00000 | 0)));
}
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
* @override
*/
toString(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
// We can avoid very expensive division based code path for some common
// cases.
if (this.isSafeInteger()) {
var asNumber = this.toNumber();
// Shortcutting for radix 10 (common case) to avoid boxing via toString:
// https://jsperf.com/tostring-vs-vs-if
return radix == 10 ? ('' + asNumber) : asNumber.toString(radix);
}
// We need to split 64bit integer into: `a * radix**safeDigits + b` where
// neither `a` nor `b` exceeds 53 bits, meaning that safeDigits can be any
// number in a range: [(63 - 53) / log2(radix); 53 / log2(radix)].
// Other options that need to be benchmarked:
// 11..16 - (radix >> 2);
// 10..13 - (radix >> 3);
// 10..11 - (radix >> 4);
var safeDigits = 14 - (radix >> 2);
var radixPowSafeDigits = Math.pow(radix, safeDigits);
var radixToPower =
Long.fromBits(radixPowSafeDigits, radixPowSafeDigits / TWO_PWR_32_DBL_);
var remDiv = this.div(radixToPower);
var val = Math.abs(this.subtract(remDiv.multiply(radixToPower)).toNumber());
var digits = radix == 10 ? ('' + val) : val.toString(radix);
if (digits.length < safeDigits) {
// Up to 13 leading 0s we might need to insert as the greatest safeDigits
// value is 14 (for radix 2).
digits = '0000000000000'.substr(digits.length - safeDigits) + digits;
}
val = remDiv.toNumber();
return (radix == 10 ? val : val.toString(radix)) + digits;
}
/** @return {number} The high 32-bits as a signed value. */
getHighBits() {
return this.high_;
}
/** @return {number} The low 32-bits as a signed value. */
getLowBits() {
return this.low_;
}
/** @return {number} The low 32-bits as an unsigned value. */
getLowBitsUnsigned() {
// The right shifting fixes negative values in the case when
// intval >= 2^31; for more details see
// https://github.com/google/closure-library/pull/498
return this.low_ >>> 0;
}
/**
* @return {number} Returns the number of bits needed to represent the
* absolute value of this Long.
*/
getNumBitsAbs() {
if (this.isNegative()) {
if (this.equals(Long.getMinValue())) {
return 64;
} else {
return this.negate().getNumBitsAbs();
}
} else {
var val = this.high_ != 0 ? this.high_ : this.low_;
for (var bit = 31; bit > 0; bit--) {
if ((val & (1 << bit)) != 0) {
break;
}
}
return this.high_ != 0 ? bit + 33 : bit + 1;
}
}
/** @return {boolean} Whether this value is zero. */
isZero() {
// Check low part first as there is high chance it's not 0.
return this.low_ == 0 && this.high_ == 0;
}
/** @return {boolean} Whether this value is negative. */
isNegative() {
return this.high_ < 0;
}
/** @return {boolean} Whether this value is odd. */
isOdd() {
return (this.low_ & 1) == 1;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long equals the other.
*/
equals(other) {
// Compare low parts first as there is higher chance they are different.
return (this.low_ == other.low_) && (this.high_ == other.high_);
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long does not equal the other.
*/
notEquals(other) {
return !this.equals(other);
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is less than the other.
*/
lessThan(other) {
return this.compare(other) < 0;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is less than or equal to the other.
*/
lessThanOrEqual(other) {
return this.compare(other) <= 0;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than the other.
*/
greaterThan(other) {
return this.compare(other) > 0;
}
/**
* @param {?Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than or equal to the other.
*/
greaterThanOrEqual(other) {
return this.compare(other) >= 0;
}
/**
* Compares this Long with the given one.
* @param {?Long} other Long to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
compare(other) {
if (this.high_ == other.high_) {
if (this.low_ == other.low_) {
return 0;
}
return this.getLowBitsUnsigned() > other.getLowBitsUnsigned() ? 1 : -1;
}
return this.high_ > other.high_ ? 1 : -1;
}
/** @return {!Long} The negation of this value. */
negate() {
var negLow = (~this.low_ + 1) | 0;
var overflowFromLow = !negLow;
var negHigh = (~this.high_ + overflowFromLow) | 0;
return Long.fromBits(negLow, negHigh);
}
/**
* Returns the sum of this and the given Long.
* @param {?Long} other Long to add to this one.
* @return {!Long} The sum of this and the given Long.
*/
add(other) {
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 + b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 + b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 + b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 + b48;
c48 &= 0xFFFF;
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
}
/**
* Returns the difference of this and the given Long.
* @param {?Long} other Long to subtract from this.
* @return {!Long} The difference of this and the given Long.
*/
subtract(other) {
return this.add(other.negate());
}
/**
* Returns the product of this and the given long.
* @param {?Long} other Long to multiply with this.
* @return {!Long} The product of this and the other.
*/
multiply(other) {
if (this.isZero()) {
return this;
}
if (other.isZero()) {
return other;
}
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
// We can skip products that would overflow.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 * b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 * b00;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c16 += a00 * b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 * b00;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a16 * b16;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a00 * b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
c48 &= 0xFFFF;
return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
}
/**
* Returns this Long divided by the given one.
* @param {?Long} other Long by which to divide.
* @return {!Long} This Long divided by the given one.
*/
div(other) {
if (other.isZero()) {
throw new Error('division by zero');
}
if (this.isNegative()) {
if (this.equals(Long.getMinValue())) {
if (other.equals(Long.getOne()) || other.equals(Long.getNegOne())) {
return Long.getMinValue(); // recall -MIN_VALUE == MIN_VALUE
}
if (other.equals(Long.getMinValue())) {
return Long.getOne();
}
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
var halfThis = this.shiftRight(1);
var approx = halfThis.div(other).shiftLeft(1);
if (approx.equals(Long.getZero())) {
return other.isNegative() ? Long.getOne() : Long.getNegOne();
}
var rem = this.subtract(other.multiply(approx));
var result = approx.add(rem.div(other));
return result;
}
if (other.isNegative()) {
return this.negate().div(other.negate());
}
return this.negate().div(other).negate();
}
if (this.isZero()) {
return Long.getZero();
}
if (other.isNegative()) {
if (other.equals(Long.getMinValue())) {
return Long.getZero();
}
return this.div(other.negate()).negate();
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = Long.getZero();
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit
// or the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = Long.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = Long.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = Long.getOne();
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
}
/**
* Returns this Long modulo the given one.
* @param {?Long} other Long by which to mod.
* @return {!Long} This Long modulo the given one.
*/
modulo(other) {
return this.subtract(this.div(other).multiply(other));
}
/** @return {!Long} The bitwise-NOT of this value. */
not() {
return Long.fromBits(~this.low_, ~this.high_);
}
/**
* Returns the bitwise-AND of this Long and the given one.
* @param {?Long} other The Long with which to AND.
* @return {!Long} The bitwise-AND of this and the other.
*/
and(other) {
return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_);
}
/**
* Returns the bitwise-OR of this Long and the given one.
* @param {?Long} other The Long with which to OR.
* @return {!Long} The bitwise-OR of this and the other.
*/
or(other) {
return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_);
}
/**
* Returns the bitwise-XOR of this Long and the given one.
* @param {?Long} other The Long with which to XOR.
* @return {!Long} The bitwise-XOR of this and the other.
*/
xor(other) {
return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
}
/**
* Returns this Long with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!Long} This shifted to the left by the given amount.
*/
shiftLeft(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var low = this.low_;
if (numBits < 32) {
var high = this.high_;
return Long.fromBits(
low << numBits, (high << numBits) | (low >>> (32 - numBits)));
} else {
return Long.fromBits(0, low << (numBits - 32));
}
}
}
/**
* Returns this Long with bits shifted to the right by the given amount.
* The new leading bits match the current sign bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!Long} This shifted to the right by the given amount.
*/
shiftRight(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >> numBits);
} else {
return Long.fromBits(high >> (numBits - 32), high >= 0 ? 0 : -1);
}
}
}
/**
* Returns this Long with bits shifted to the right by the given amount, with
* zeros placed into the new leading bits.
* @param {number} numBits The number of bits by which to shift.
* @return {!Long} This shifted to the right by the given amount,
* with zeros placed into the new leading bits.
*/
shiftRightUnsigned(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)), high >>> numBits);
} else if (numBits == 32) {
return Long.fromBits(high, 0);
} else {
return Long.fromBits(high >>> (numBits - 32), 0);
}
}
}
/**
* Returns a Long representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!Long} The corresponding Long value.
*/
static fromInt(value) {
var intValue = value | 0;
asserts.assert(value === intValue, 'value should be a 32-bit integer');
if (-128 <= intValue && intValue < 128) {
return getCachedIntValue_(intValue);
} else {
return new Long(intValue, intValue < 0 ? -1 : 0);
}
}
/**
* Returns a Long representing the given value.
* NaN will be returned as zero. Infinity is converted to max value and
* -Infinity to min value.
* @param {number} value The number in question.
* @return {!Long} The corresponding Long value.
*/
static fromNumber(value) {
if (value > 0) {
if (value >= TWO_PWR_63_DBL_) {
return Long.getMaxValue();
}
return new Long(value, value / TWO_PWR_32_DBL_);
} else if (value < 0) {
if (value <= -TWO_PWR_63_DBL_) {
return Long.getMinValue();
}
return new Long(-value, -value / TWO_PWR_32_DBL_).negate();
} else {
// NaN or 0.
return Long.getZero();
}
}
/**
* Returns a Long representing the 64-bit integer that comes by concatenating
* the given high and low bits. Each is assumed to use 32 bits.
* @param {number} lowBits The low 32-bits.
* @param {number} highBits The high 32-bits.
* @return {!Long} The corresponding Long value.
*/
static fromBits(lowBits, highBits) {
return new Long(lowBits, highBits);
}
/**
* Returns a Long representation of the given string, written using the given
* radix.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!Long} The corresponding Long value.
*/
static fromString(str, opt_radix) {
if (str.charAt(0) == '-') {
return Long.fromString(str.substring(1), opt_radix).negate();
}
// We can avoid very expensive multiply based code path for some common
// cases.
var numberValue = parseInt(str, opt_radix || 10);
if (numberValue <= MAX_SAFE_INTEGER_) {
return new Long(
(numberValue % TWO_PWR_32_DBL_) | 0,
(numberValue / TWO_PWR_32_DBL_) | 0);
}
if (str.length == 0) {
throw new Error('number format error: empty string');
}
if (str.indexOf('-') >= 0) {
throw new Error('number format error: interior "-" character: ' + str);
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated multiply.
var radixToPower = Long.fromNumber(Math.pow(radix, 8));
var result = Long.getZero();
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = Long.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(Long.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(Long.fromNumber(value));
}
}
return result;
}
/**
* Returns the boolean value of whether the input string is within a Long's
* range. Assumes an input string containing only numeric characters with an
* optional preceding '-'.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {boolean} Whether the string is within the range of a Long.
*/
static isStringInRange(str, opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw new Error('radix out of range: ' + radix);
}
var extremeValue = (str.charAt(0) == '-') ? MIN_VALUE_FOR_RADIX_[radix] :
MAX_VALUE_FOR_RADIX_[radix];
if (str.length < extremeValue.length) {
return true;
} else if (str.length == extremeValue.length && str <= extremeValue) {
return true;
} else {
return false;
}
}
/**
* @return {!Long}
* @public
*/
static getZero() {
return ZERO_;
}
/**
* @return {!Long}
* @public
*/
static getOne() {
return ONE_;
}
/**
* @return {!Long}
* @public
*/
static getNegOne() {
return NEG_ONE_;
}
/**
* @return {!Long}
* @public
*/
static getMaxValue() {
return MAX_VALUE_;
}
/**
* @return {!Long}
* @public
*/
static getMinValue() {
return MIN_VALUE_;
}
/**
* @return {!Long}
* @public
*/
static getTwoPwr24() {
return TWO_PWR_24_;
}
}
exports = Long;
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Long representations of small integer values.
* @type {!Object<number, !Long>}
* @private @const
*/
const IntCache_ = {};
/**
* Returns a cached long number representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!Long} The corresponding Long value.
* @private
*/
function getCachedIntValue_(value) {
return reflect.cache(IntCache_, value, function(val) {
return new Long(val, val < 0 ? -1 : 0);
});
}
/**
* The array of maximum values of a Long in string representation for a given
* radix between 2 and 36, inclusive.
* @private @const {!Array<string>}
*/
const MAX_VALUE_FOR_RADIX_ = [
'', '', // unused
'111111111111111111111111111111111111111111111111111111111111111',
// base 2
'2021110011022210012102010021220101220221', // base 3
'13333333333333333333333333333333', // base 4
'1104332401304422434310311212', // base 5
'1540241003031030222122211', // base 6
'22341010611245052052300', // base 7
'777777777777777777777', // base 8
'67404283172107811827', // base 9
'9223372036854775807', // base 10
'1728002635214590697', // base 11
'41a792678515120367', // base 12
'10b269549075433c37', // base 13
'4340724c6c71dc7a7', // base 14
'160e2ad3246366807', // base 15
'7fffffffffffffff', // base 16
'33d3d8307b214008', // base 17
'16agh595df825fa7', // base 18
'ba643dci0ffeehh', // base 19
'5cbfjia3fh26ja7', // base 20
'2heiciiie82dh97', // base 21
'1adaibb21dckfa7', // base 22
'i6k448cf4192c2', // base 23
'acd772jnc9l0l7', // base 24
'64ie1focnn5g77', // base 25
'3igoecjbmca687', // base 26
'27c48l5b37oaop', // base 27
'1bk39f3ah3dmq7', // base 28
'q1se8f0m04isb', // base 29
'hajppbc1fc207', // base 30
'bm03i95hia437', // base 31
'7vvvvvvvvvvvv', // base 32
'5hg4ck9jd4u37', // base 33
'3tdtk1v8j6tpp', // base 34
'2pijmikexrxp7', // base 35
'1y2p0ij32e8e7' // base 36
];
/**
* The array of minimum values of a Long in string representation for a given
* radix between 2 and 36, inclusive.
* @private @const {!Array<string>}
*/
const MIN_VALUE_FOR_RADIX_ = [
'', '', // unused
'-1000000000000000000000000000000000000000000000000000000000000000',
// base 2
'-2021110011022210012102010021220101220222', // base 3
'-20000000000000000000000000000000', // base 4
'-1104332401304422434310311213', // base 5
'-1540241003031030222122212', // base 6
'-22341010611245052052301', // base 7
'-1000000000000000000000', // base 8
'-67404283172107811828', // base 9
'-9223372036854775808', // base 10
'-1728002635214590698', // base 11
'-41a792678515120368', // base 12
'-10b269549075433c38', // base 13
'-4340724c6c71dc7a8', // base 14
'-160e2ad3246366808', // base 15
'-8000000000000000', // base 16
'-33d3d8307b214009', // base 17
'-16agh595df825fa8', // base 18
'-ba643dci0ffeehi', // base 19
'-5cbfjia3fh26ja8', // base 20
'-2heiciiie82dh98', // base 21
'-1adaibb21dckfa8', // base 22
'-i6k448cf4192c3', // base 23
'-acd772jnc9l0l8', // base 24
'-64ie1focnn5g78', // base 25
'-3igoecjbmca688', // base 26
'-27c48l5b37oaoq', // base 27
'-1bk39f3ah3dmq8', // base 28
'-q1se8f0m04isc', // base 29
'-hajppbc1fc208', // base 30
'-bm03i95hia438', // base 31
'-8000000000000', // base 32
'-5hg4ck9jd4u38', // base 33
'-3tdtk1v8j6tpq', // base 34
'-2pijmikexrxp8', // base 35
'-1y2p0ij32e8e8' // base 36
];
/**
* TODO(goktug): Replace with Number.MAX_SAFE_INTEGER when polyfil is guaranteed
* to be removed.
* @type {number}
* @private @const
*/
const MAX_SAFE_INTEGER_ = 0x1fffffffffffff;
// NOTE: the compiler should inline these constant values below and then remove
// these variables, so there should be no runtime penalty for these.
/**
* Number used repeated below in calculations. This must appear before the
* first call to any from* function above.
* @const {number}
* @private
*/
const TWO_PWR_32_DBL_ = 0x100000000;
/**
* @const {number}
* @private
*/
const TWO_PWR_63_DBL_ = 0x8000000000000000;
/**
* @private @const {!Long}
*/
const ZERO_ = Long.fromBits(0, 0);
/**
* @private @const {!Long}
*/
const ONE_ = Long.fromBits(1, 0);
/**
* @private @const {!Long}
*/
const NEG_ONE_ = Long.fromBits(-1, -1);
/**
* @private @const {!Long}
*/
const MAX_VALUE_ = Long.fromBits(0xFFFFFFFF, 0x7FFFFFFF);
/**
* @private @const {!Long}
*/
const MIN_VALUE_ = Long.fromBits(0, 0x80000000);
/**
* @private @const {!Long}
*/
const TWO_PWR_24_ = Long.fromBits(1 << 24, 0);