-
Notifications
You must be signed in to change notification settings - Fork 87
/
train_mnist.py
111 lines (98 loc) · 3.58 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# Copyright 2022 The EvoJAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train an agent for MNIST classification.
Example command to run this script: `python train_mnist.py --gpu-id=0`
"""
import argparse
import os
import shutil
from evojax import Trainer
from evojax.task.mnist import MNIST
from evojax.policy.convnet import ConvNetPolicy
from evojax.algo import PGPE
from evojax import util
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--pop-size', type=int, default=64, help='NE population size.')
parser.add_argument(
'--batch-size', type=int, default=1024, help='Batch size for training.')
parser.add_argument(
'--max-iter', type=int, default=5000, help='Max training iterations.')
parser.add_argument(
'--test-interval', type=int, default=1000, help='Test interval.')
parser.add_argument(
'--log-interval', type=int, default=100, help='Logging interval.')
parser.add_argument(
'--seed', type=int, default=42, help='Random seed for training.')
parser.add_argument(
'--center-lr', type=float, default=0.006, help='Center learning rate.')
parser.add_argument(
'--std-lr', type=float, default=0.089, help='Std learning rate.')
parser.add_argument(
'--init-std', type=float, default=0.039, help='Initial std.')
parser.add_argument(
'--gpu-id', type=str, help='GPU(s) to use.')
parser.add_argument(
'--debug', action='store_true', help='Debug mode.')
config, _ = parser.parse_known_args()
return config
def main(config):
log_dir = './log/mnist'
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
logger = util.create_logger(
name='MNIST', log_dir=log_dir, debug=config.debug)
logger.info('EvoJAX MNIST Demo')
logger.info('=' * 30)
policy = ConvNetPolicy(logger=logger)
train_task = MNIST(batch_size=config.batch_size, test=False)
test_task = MNIST(batch_size=config.batch_size, test=True)
solver = PGPE(
pop_size=config.pop_size,
param_size=policy.num_params,
optimizer='adam',
center_learning_rate=config.center_lr,
stdev_learning_rate=config.std_lr,
init_stdev=config.init_std,
logger=logger,
seed=config.seed,
)
# Train.
trainer = Trainer(
policy=policy,
solver=solver,
train_task=train_task,
test_task=test_task,
max_iter=config.max_iter,
log_interval=config.log_interval,
test_interval=config.test_interval,
n_repeats=1,
n_evaluations=1,
seed=config.seed,
log_dir=log_dir,
logger=logger,
)
trainer.run(demo_mode=False)
# Test the final model.
src_file = os.path.join(log_dir, 'best.npz')
tar_file = os.path.join(log_dir, 'model.npz')
shutil.copy(src_file, tar_file)
trainer.model_dir = log_dir
trainer.run(demo_mode=True)
if __name__ == '__main__':
configs = parse_args()
if configs.gpu_id is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = configs.gpu_id
main(configs)