Skip to content

AI-Hypercomputer/jetstream-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Jetstream-PyTorch

JetStream Engine implementation in PyTorch

Latest Release:

The latest release version is tagged with jetstream-v0.2.3. If you are running the release version Please follow the README of the that version here: https://github.com/google/jetstream-pytorch/blob/jetstream-v0.2.3/README.md

Commandline Flags might have changed between the release version to HEAD.

Outline

  1. Ssh to Cloud TPU VM (using v5e-8 TPU VM) a. Create a Cloud TPU VM if you haven’t
  2. Download jetstream-pytorch github repo
  3. Run the server
  4. Run benchmarks
  5. Typical Errors

Ssh to Cloud TPU VM (using v5e-8 TPU VM)

gcloud compute config-ssh
gcloud compute tpus tpu-vm ssh "your-tpu-vm" --project "your-project" --zone "your-project-zone"

Create a Cloud TPU VM in a GCP project if you haven’t

Follow the steps in

Clone repo and install dependencies

Get the jetstream-pytorch code

git clone https://github.com/google/jetstream-pytorch.git
git checkout jetstream-v0.2.4

(optional) Create a virtual env using venv or conda and activate it.

2. Run installation script:

cd jetstream-pytorch
source install_everything.sh

Run jetstream pytorch

List out supported models

jpt list

This will print out list of support models and variants:

meta-llama/Llama-2-7b-chat-hf
meta-llama/Llama-2-7b-hf
meta-llama/Llama-2-13b-chat-hf
meta-llama/Llama-2-13b-hf
meta-llama/Llama-2-70b-hf
meta-llama/Llama-2-70b-chat-hf
meta-llama/Meta-Llama-3-8B
meta-llama/Meta-Llama-3-8B-Instruct
meta-llama/Meta-Llama-3-70B
meta-llama/Meta-Llama-3-70B-Instruct
meta-llama/Llama-3.1-8B
meta-llama/Llama-3.1-8B-Instruct
meta-llama/Llama-3.2-1B
meta-llama/Llama-3.2-1B-Instruct
meta-llama/Llama-3.3-70B
meta-llama/Llama-3.3-70B-Instruct
google/gemma-2b
google/gemma-2b-it
google/gemma-7b
google/gemma-7b-it
mistralai/Mixtral-8x7B-v0.1
mistralai/Mixtral-8x7B-Instruct-v0.1

To run jetstream-pytorch server with one model:

jpt serve --model_id meta-llama/Meta-Llama-3-8B-Instruct

If it's the first time you run this model, it will download weights from HuggingFace.

HuggingFace's Llama3 weights are gated, so you need to either run huggingface-cli login to set your token, OR, pass your hf_token explicitly.

To pass hf token explicitly, add --hf_token flag

jpt serve --model_id meta-llama/Meta-Llama-3-8B-Instruct --hf_token=...

To login using huggingface hub, run:

pip install -U "huggingface_hub[cli]"
huggingface-cli login

Then follow its prompt.

After the weights are downloaded, Next time when you run this --hf_token will no longer be required.

To run this model in int8 quantization, add --quantize_weights=1. Quantization will be done on the flight as the weight loads.

Weights downloaded from HuggingFace will be stored by default in checkpoints folder. in the place where jpt is executed.

You can change where the weights are stored with --working_dir flag.

If you wish to use your own checkpoint, then, place them inside of the checkpoints/<org>/<model>/hf_original dir (or the corresponding subdir in --working_dir). For example, Llama3 checkpoints will be at checkpoints/meta-llama/Llama-2-7b-hf/hf_original/*.safetensors. You can replace these files with modified weights in HuggingFace format.

Run the server with ray

Below are steps run server with ray:

  1. Ssh to Cloud Multiple Host TPU VM (v5e-16 TPU VM)
  2. Step 2 to step 5 in Outline
  3. Setup ray cluster
  4. Run server with ray

Setup Ray Cluster

Login host 0 VM, start ray head with below command:

ray start --head

Login other host VMs, start ray head with below command:

ray start --address='$ip:$port'

Note: Get address ip and port information from ray head.

Run server with ray

Here is an example to run the server with ray for llama2 7B model:

export DISABLE_XLA2_PJRT_TEST="true"
python run_server_with_ray.py --tpu_chips=16 --num_hosts=4 --worker_chips=4 -model_name=$model_name          --size=7b --batch_size=96 --max_cache_length=2048 --quantize_weights=$quantize --quantize_type=$quantize_type --quantize_kv_cache=$quantize --checkpoint_path=$output_ckpt_dir   --tokenizer_path=$tokenizer_path --sharding_config="default_shardings/llama.yaml"

Run benchmark

Start the server and then go to the deps/JetStream folder (downloaded during install_everything.sh)

cd deps/JetStream
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
export dataset_path=ShareGPT_V3_unfiltered_cleaned_split.json
python benchmarks/benchmark_serving.py --tokenizer $tokenizer_path --num-prompts 2000  --dataset-path  $dataset_path --dataset sharegpt --save-request-outputs --warmup-mode=sampled --model=$model_name

Please look at deps/JetStream/benchmarks/README.md for more information.

Run server with Ray Serve

Prerequisites

If running on GKE:

  1. Follow instructions on this link to setup a GKE cluster and the TPU webhook.
  2. Follow instructions here to enable GCSFuse for your cluster. This will be needed to store the converted weights.
  3. Deploy one of the sample Kuberay cluster configurations:
kubectl apply -f kuberay/manifests/ray-cluster.tpu-v4-singlehost.yaml

or

kubectl apply -f kuberay/manifests/ray-cluster.tpu-v4-multihost.yaml

Start a Ray Serve deployment

Single-host (Llama2 7B):

export RAY_ADDRESS=http://localhost:8265

kubectl port-forward svc/example-cluster-kuberay-head-svc 8265:8265 &

ray job submit --runtime-env-json='{"working_dir": "."}' -- python run_ray_serve_interleave.py  --tpu_chips=4 --num_hosts=1 --size=7b --model_name=llama-2 --batch_size=32 --max_cache_length=2048 --tokenizer_path=/llama/tokenizer.model --checkpoint_path=/llama/ckpt --quantize_weights=True --quantize_type="int8_per_channel" --quantize_kv_cache=True --sharding_config="default_shardings/llama.yaml"

Multi-host (Llama2 70B):

export RAY_ADDRESS=http://localhost:8265

kubectl port-forward svc/example-cluster-kuberay-head-svc 8265:8265 &

ray job submit --runtime-env-json='{"working_dir": "."}' -- python run_ray_serve_interleave.py  --tpu_chips=8 --num_hosts=2 --size=70b --model_name=llama-2 --batch_size=8 --max_cache_length=2048 --tokenizer_path=/llama/tokenizer.model --checkpoint_path=/llama/ckpt --quantize_weights=True --quantize_type="int8_per_channel" --quantize_kv_cache=True --sharding_config="default_shardings/llama.yaml"

Sending an inference request

Port-forward to port 8888 for gRPC:

kubectl port-forward svc/example-cluster-kuberay-head-svc 8888:8888 &

Sample python script:

import requests
import os
import grpc

from jetstream.core.proto import jetstream_pb2
from jetstream.core.proto import jetstream_pb2_grpc

prompt = "What are the top 5 languages?"

channel = grpc.insecure_channel("localhost:8888")
stub = jetstream_pb2_grpc.OrchestratorStub(channel)

request = jetstream_pb2.DecodeRequest(
    text_content=jetstream_pb2.DecodeRequest.TextContent(
        text=prompt
    ),
    priority=0,
    max_tokens=2000,
)

response = stub.Decode(request)
output = []
for resp in response:
  output.extend(resp.stream_content.samples[0].text)

text_output = "".join(output)
print(f"Prompt: {prompt}")
print(f"Response: {text_output}")

Typical Errors

Unexpected keyword argument 'device'

Fix:

  • Uninstall jax and jaxlib dependencies
  • Reinstall using `source install_everything.sh

Out of memory

Fix:

  • Use smaller batch size
  • Use quantization

Links

JetStream

MaxText