This repository has been archived by the owner on Dec 29, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 18
/
example_visualization.py
76 lines (57 loc) · 2.59 KB
/
example_visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Load MNIST dataset, and generate its n-digit version."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from PIL import Image
def main():
parser = argparse.ArgumentParser(
description='Visualize created n-digit MNIST dataset.')
parser.add_argument('--num_digits', default=1, type=int,
help='Number of concatenated digits per data point.')
parser.add_argument('--domain_gap', default='instance', type=str,
choices=['instance', 'number'],
help='How to split training and test sets'
'of the n-digit mnist.')
parser.add_argument('--num_visualize', default=10, type=int,
help='How many samples to visualize.')
parser.add_argument('--output_dir', default='data', type=str,
help='Directory to write the dataset.')
parser.add_argument('--mnist_split', default='train', type=str,
help='Which MNIST split was used to generate data?'
'(train or test)')
args = parser.parse_args()
# Construct dataset directory.
dataset_dir = os.path.join(args.output_dir,
'dataset_mnist_%d_%s' % (args.num_digits,
args.domain_gap))
path = os.path.join(args.dataset_dir, '%s.npz' % args.mnist_split)
with open(path, 'r') as f:
data = np.load(path)
labels = data['labels']
images = data['images']
visualize_dir = os.path.join(args.dataset_dir, 'visualization')
if not os.path.exists(visualize_dir):
os.makedirs(visualize_dir)
visualize_indices = np.random.choice(range(len(labels)),
args.num_visualize, replace=False)
for i in visualize_indices:
im = Image.fromarray(images[i])
im.save(os.path.join(args.visualize_dir,
'sample_image_%d_label_%d.jpg' % (i, labels[i])))
if __name__ == '__main__':
main()