-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathn_choose_k.cc
168 lines (158 loc) · 6.78 KB
/
n_choose_k.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/algorithms/n_choose_k.h"
#include <cmath>
#include <cstdint>
#include <limits>
#include <vector>
#include "absl/log/check.h"
#include "absl/numeric/int128.h"
#include "absl/status/status.h"
#include "absl/status/statusor.h"
#include "absl/strings/str_format.h"
#include "absl/time/clock.h"
#include "absl/time/time.h"
#include "ortools/algorithms/binary_search.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
namespace operations_research {
namespace {
// This is the actual computation. It's in O(k).
template <typename Int>
Int InternalChoose(Int n, Int k) {
DCHECK_LE(k, n - k);
DCHECK_GT(k, 0); // Having k>0 lets us start with i=2 (small optimization).
// We compute n * (n-1) * ... * (n-k+1) / k! in the best possible order to
// guarantee exact results, while trying to avoid overflows. It's not
// perfect: we finish with a division by k, which means that me may overflow
// even if the result doesn't (by a factor of up to k).
Int result = n;
for (Int i = 2; i <= k; ++i) {
result *= n + 1 - i;
result /= i; // The product of i consecutive numbers is divisible by i!.
}
return result;
}
// This function precomputes the maximum N such that (N choose K) doesn't
// overflow, for all K.
// When `overflows_intermediate_computation` is true, "overflow" means
// "some overflow happens inside InternalChoose<int64_t>()", and when it's false
// it simply means "the result doesn't fit in an int64_t".
// This is only used in contexts where K ≤ N-K, which implies N ≥ 2K, thus we
// can stop when (2K Choose K) overflows, because at and beyond such K,
// (N Choose K) will always overflow. In practice that happens for K=31 or 34
// depending on `overflows_intermediate_computation`.
template <class Int>
std::vector<Int> LastNThatDoesNotOverflowForAllK(
bool overflows_intermediate_computation) {
absl::Time start_time = absl::Now();
// Given the algorithm used in InternalChoose(), it's not hard to
// find out when (N choose K) overflows an int64_t during its internal
// computation: that's when (N choose K) > MAX_INT / k.
// For K ≤ 2, we hardcode the values of the maximum N. That's because
// the binary search done below uses MathUtil::LogCombinations, which only
// works on int32_t, and that's problematic for the max N we get for K=2.
//
// For K=2, we want N(N-1) ≤ 2^num_digits, or N(N-1)/2 ≤ 2^num_digits if
// !overflows_intermediate_computation, i.e. N(N-1) ≤ 2^(num_digits+1).
// Then, when d is even, N(N-1) ≤ 2^d ⇔ N ≤ 2^(d/2), which is simple.
// When d is odd, it's harder: N(N-1)≈(N-0.5)² and thus we get the bound
// N ≤ pow(2.0, d/2)+0.5.
const int bound_digits = std::numeric_limits<Int>::digits +
(overflows_intermediate_computation ? 0 : 1);
std::vector<Int> result = {
std::numeric_limits<Int>::max(), // K=0
std::numeric_limits<Int>::max(), // K=1
bound_digits % 2 == 0
? Int{1} << (bound_digits / 2)
: static_cast<Int>(
0.5 + std::pow(2.0, 0.5 * std::numeric_limits<Int>::digits)),
};
// We find the last N with binary search, for all K. We stop growing K
// when (2*K Choose K) overflows.
for (Int k = 3;; ++k) {
const double max_log_comb =
overflows_intermediate_computation
? std::numeric_limits<Int>::digits * std::log(2) - std::log(k)
: std::numeric_limits<Int>::digits * std::log(2);
result.push_back(BinarySearch<Int>(
/*x_true*/ k,
// x_false=X, X needs to be large enough so that X choose 3 overflows:
// (X choose 3)≈(X-1)³/6, so we pick X = 2+6*2^(num_digits/3+1).
/*x_false=*/
(static_cast<Int>(
2 + 6 * std::pow(2.0, std::numeric_limits<Int>::digits / 3 + 1))),
[k, max_log_comb](Int n) {
return MathUtil::LogCombinations(n, k) <= max_log_comb;
}));
if (result.back() < 2 * k) {
result.pop_back();
break;
}
}
// Some DCHECKs for int64_t, which should validate the general formulaes.
if constexpr (std::numeric_limits<Int>::digits == 63) {
DCHECK_EQ(result.size(),
overflows_intermediate_computation
? 31 // 60 Choose 30 < 2^63/30 but 62 Choose 31 > 2^63/31.
: 34); // 66 Choose 33 < 2^63 but 68 Choose 34 > 2^63.
}
VLOG(1) << "LastNThatDoesNotOverflowForAllK(): " << absl::Now() - start_time;
return result;
}
template <typename Int>
bool NChooseKIntermediateComputationOverflowsInt(Int n, Int k) {
DCHECK_LE(k, n - k);
static const auto* const result =
new std::vector<Int>(LastNThatDoesNotOverflowForAllK<Int>(
/*overflows_intermediate_computation=*/true));
return k < result->size() ? n > (*result)[k] : true;
}
template <typename Int>
bool NChooseKResultOverflowsInt(Int n, Int k) {
DCHECK_LE(k, n - k);
static const auto* const result =
new std::vector<Int>(LastNThatDoesNotOverflowForAllK<Int>(
/*overflows_intermediate_computation=*/false));
return k < result->size() ? n > (*result)[k] : true;
}
} // namespace
// NOTE(user): If performance ever matters, we could simply precompute and
// store all (N choose K) that don't overflow, there aren't that many of them:
// only a few tens of thousands, after removing simple cases like k ≤ 5.
absl::StatusOr<int64_t> NChooseK(int64_t n, int64_t k) {
if (n < 0) {
return absl::InvalidArgumentError(absl::StrFormat("n is negative (%d)", n));
}
if (k < 0) {
return absl::InvalidArgumentError(absl::StrFormat("k is negative (%d)", k));
}
if (k > n / 2) {
if (k > n) return 0; // No way to choose more than n elements from n.
k = n - k;
}
if (k == 0) return 1;
if (n < std::numeric_limits<uint32_t>::max() &&
!NChooseKIntermediateComputationOverflowsInt<uint32_t>(n, k)) {
return static_cast<int64_t>(InternalChoose<uint32_t>(n, k));
}
if (!NChooseKIntermediateComputationOverflowsInt<int64_t>(n, k)) {
return InternalChoose<uint64_t>(n, k);
}
if (NChooseKResultOverflowsInt<int64_t>(n, k)) {
return absl::InvalidArgumentError(
absl::StrFormat("(%d choose %d) overflows int64", n, k));
}
return static_cast<int64_t>(InternalChoose<absl::uint128>(n, k));
}
} // namespace operations_research