-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathBinPackingMb.java
138 lines (123 loc) · 4.55 KB
/
BinPackingMb.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// Copyright 2010-2025 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// MIP example that solves a bin packing problem.
// [START program]
package com.google.ortools.linearsolver.samples;
// [START import]
import com.google.ortools.Loader;
import com.google.ortools.modelbuilder.LinearExpr;
import com.google.ortools.modelbuilder.LinearExprBuilder;
import com.google.ortools.modelbuilder.ModelBuilder;
import com.google.ortools.modelbuilder.ModelSolver;
import com.google.ortools.modelbuilder.SolveStatus;
import com.google.ortools.modelbuilder.Variable;
// [END import]
/** Bin packing problem. */
public class BinPackingMb {
// [START program_part1]
// [START data_model]
static class DataModel {
public final double[] weights = {48, 30, 19, 36, 36, 27, 42, 42, 36, 24, 30};
public final int numItems = weights.length;
public final int numBins = weights.length;
public final int binCapacity = 100;
}
// [END data_model]
public static void main(String[] args) throws Exception {
Loader.loadNativeLibraries();
// [START data]
final DataModel data = new DataModel();
// [END data]
// [END program_part1]
// [START model]
ModelBuilder model = new ModelBuilder();
// [END model]
// [START program_part2]
// [START variables]
Variable[][] x = new Variable[data.numItems][data.numBins];
for (int i = 0; i < data.numItems; ++i) {
for (int j = 0; j < data.numBins; ++j) {
x[i][j] = model.newBoolVar("");
}
}
Variable[] y = new Variable[data.numBins];
for (int j = 0; j < data.numBins; ++j) {
y[j] = model.newBoolVar("");
}
// [END variables]
// [START constraints]
for (int i = 0; i < data.numItems; ++i) {
LinearExprBuilder oneCopy = LinearExpr.newBuilder();
for (int j = 0; j < data.numBins; ++j) {
oneCopy.add(x[i][j]);
}
model.addEquality(oneCopy, 1);
}
// The bin capacity constraint for bin j is
// sum_i w_i x_ij <= C*y_j
// To define this constraint, first subtract the left side from the right to get
// 0 <= C*y_j - sum_i w_i x_ij
//
// Note: Since sum_i w_i x_ij is positive (and y_j is 0 or 1), the right side must
// be less than or equal to C. But it's not necessary to add this constraint
// because it is forced by the other constraints.
for (int j = 0; j < data.numBins; ++j) {
LinearExprBuilder load = LinearExpr.newBuilder();
for (int i = 0; i < data.numItems; ++i) {
load.addTerm(x[i][j], data.weights[i]);
}
model.addGreaterOrEqual(LinearExpr.term(y[j], data.binCapacity), load);
}
// [END constraints]
// [START objective]
model.minimize(LinearExpr.sum(y));
// [END objective]
// [START solver]
// Create the solver with the SCIP backend and check it is supported.
ModelSolver solver = new ModelSolver("scip");
if (!solver.solverIsSupported()) {
return;
}
// [END solver]
// [START solve]
final SolveStatus resultStatus = solver.solve(model);
// [END solve]
// [START print_solution]
// Check that the problem has an optimal solution.
if (resultStatus == SolveStatus.OPTIMAL) {
System.out.println("Number of bins used: " + solver.getObjectiveValue());
double totalWeight = 0;
for (int j = 0; j < data.numBins; ++j) {
if (solver.getValue(y[j]) == 1) {
System.out.println("\nBin " + j + "\n");
double binWeight = 0;
for (int i = 0; i < data.numItems; ++i) {
if (solver.getValue(x[i][j]) == 1) {
System.out.println("Item " + i + " - weight: " + data.weights[i]);
binWeight += data.weights[i];
}
}
System.out.println("Packed bin weight: " + binWeight);
totalWeight += binWeight;
}
}
System.out.println("\nTotal packed weight: " + totalWeight);
} else {
System.err.println("The problem does not have an optimal solution.");
}
// [END print_solution]
}
private BinPackingMb() {}
}
// [END program_part2]
// [END program]