-
Notifications
You must be signed in to change notification settings - Fork 347
/
hyperparameter_tuning.py
224 lines (177 loc) · 6.6 KB
/
hyperparameter_tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import abc
from typing import Dict, List, Optional, Sequence, Tuple, Union
import proto
from google.cloud.aiplatform.compat.types import study as gca_study_compat
_SCALE_TYPE_MAP = {
"linear": gca_study_compat.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
"log": gca_study_compat.StudySpec.ParameterSpec.ScaleType.UNIT_LOG_SCALE,
"reverse_log": gca_study_compat.StudySpec.ParameterSpec.ScaleType.UNIT_REVERSE_LOG_SCALE,
"unspecified": gca_study_compat.StudySpec.ParameterSpec.ScaleType.SCALE_TYPE_UNSPECIFIED,
}
class _ParameterSpec(metaclass=abc.ABCMeta):
"""Base class represents a single parameter to optimize."""
def __init__(
self,
conditional_parameter_spec: Optional[Dict[str, "_ParameterSpec"]] = None,
parent_values: Optional[List[Union[float, int, str]]] = None,
):
self.conditional_parameter_spec = conditional_parameter_spec
self.parent_values = parent_values
@property
@classmethod
@abc.abstractmethod
def _proto_parameter_value_class(self) -> proto.Message:
"""The proto representation of this parameter."""
pass
@property
@classmethod
@abc.abstractmethod
def _parameter_value_map(self) -> Tuple[Tuple[str, str]]:
"""A Tuple map of parameter key to underlying proto key."""
pass
@property
@classmethod
@abc.abstractmethod
def _parameter_spec_value_key(self) -> Tuple[Tuple[str, str]]:
"""The ParameterSpec key this parameter should be assigned."""
pass
@property
def _proto_parameter_value_spec(self) -> proto.Message:
"""Converts this parameter to it's parameter value representation."""
proto_parameter_value_spec = self._proto_parameter_value_class()
for self_attr_key, proto_attr_key in self._parameter_value_map:
setattr(
proto_parameter_value_spec, proto_attr_key, getattr(self, self_attr_key)
)
return proto_parameter_value_spec
def _to_parameter_spec(
self, parameter_id: str
) -> gca_study_compat.StudySpec.ParameterSpec:
"""Converts this parameter to ParameterSpec."""
# TODO: Conditional parameters
parameter_spec = gca_study_compat.StudySpec.ParameterSpec(
parameter_id=parameter_id,
scale_type=_SCALE_TYPE_MAP.get(getattr(self, "scale", "unspecified")),
)
setattr(
parameter_spec,
self._parameter_spec_value_key,
self._proto_parameter_value_spec,
)
return parameter_spec
class DoubleParameterSpec(_ParameterSpec):
_proto_parameter_value_class = (
gca_study_compat.StudySpec.ParameterSpec.DoubleValueSpec
)
_parameter_value_map = (("min", "min_value"), ("max", "max_value"))
_parameter_spec_value_key = "double_value_spec"
def __init__(
self,
min: float,
max: float,
scale: str,
):
"""
Value specification for a parameter in ``DOUBLE`` type.
Args:
min (float):
Required. Inclusive minimum value of the
parameter.
max (float):
Required. Inclusive maximum value of the
parameter.
scale (str):
Required. The type of scaling that should be applied to this parameter.
Accepts: 'linear', 'log', 'reverse_log'
"""
super().__init__()
self.min = min
self.max = max
self.scale = scale
class IntegerParameterSpec(_ParameterSpec):
_proto_parameter_value_class = (
gca_study_compat.StudySpec.ParameterSpec.IntegerValueSpec
)
_parameter_value_map = (("min", "min_value"), ("max", "max_value"))
_parameter_spec_value_key = "integer_value_spec"
def __init__(
self,
min: int,
max: int,
scale: str,
):
"""
Value specification for a parameter in ``INTEGER`` type.
Args:
min (float):
Required. Inclusive minimum value of the
parameter.
max (float):
Required. Inclusive maximum value of the
parameter.
scale (str):
Required. The type of scaling that should be applied to this parameter.
Accepts: 'linear', 'log', 'reverse_log'
"""
super().__init__()
self.min = min
self.max = max
self.scale = scale
class CategoricalParameterSpec(_ParameterSpec):
_proto_parameter_value_class = (
gca_study_compat.StudySpec.ParameterSpec.CategoricalValueSpec
)
_parameter_value_map = (("values", "values"),)
_parameter_spec_value_key = "categorical_value_spec"
def __init__(
self,
values: Sequence[str],
):
"""Value specification for a parameter in ``CATEGORICAL`` type.
Args:
values (Sequence[str]):
Required. The list of possible categories.
"""
super().__init__()
self.values = values
class DiscreteParameterSpec(_ParameterSpec):
_proto_parameter_value_class = (
gca_study_compat.StudySpec.ParameterSpec.DiscreteValueSpec
)
_parameter_value_map = (("values", "values"),)
_parameter_spec_value_key = "discrete_value_spec"
def __init__(
self,
values: Sequence[float],
scale: str,
):
"""Value specification for a parameter in ``DISCRETE`` type.
values (Sequence[float]):
Required. A list of possible values.
The list should be in increasing order and at
least 1e-10 apart. For instance, this parameter
might have possible settings of 1.5, 2.5, and
4.0. This list should not contain more than
1,000 values.
scale (str):
Required. The type of scaling that should be applied to this parameter.
Accepts: 'linear', 'log', 'reverse_log'
"""
super().__init__()
self.values = values
self.scale = scale