-
Notifications
You must be signed in to change notification settings - Fork 309
/
Copy pathtest_table_pandas.py
192 lines (165 loc) · 7.42 KB
/
test_table_pandas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import datetime
import decimal
from unittest import mock
import pyarrow
import pytest
from google.cloud import bigquery
pandas = pytest.importorskip("pandas")
TEST_PATH = "/v1/project/test-proj/dataset/test-dset/table/test-tbl/data"
@pytest.fixture
def class_under_test():
from google.cloud.bigquery.table import RowIterator
return RowIterator
def test_to_dataframe_nullable_scalars(monkeypatch, class_under_test):
# See tests/system/test_arrow.py for the actual types we get from the API.
arrow_schema = pyarrow.schema(
[
pyarrow.field("bignumeric_col", pyarrow.decimal256(76, scale=38)),
pyarrow.field("bool_col", pyarrow.bool_()),
pyarrow.field("bytes_col", pyarrow.binary()),
pyarrow.field("date_col", pyarrow.date32()),
pyarrow.field("datetime_col", pyarrow.timestamp("us", tz=None)),
pyarrow.field("float64_col", pyarrow.float64()),
pyarrow.field("int64_col", pyarrow.int64()),
pyarrow.field("numeric_col", pyarrow.decimal128(38, scale=9)),
pyarrow.field("string_col", pyarrow.string()),
pyarrow.field("time_col", pyarrow.time64("us")),
pyarrow.field(
"timestamp_col", pyarrow.timestamp("us", tz=datetime.timezone.utc)
),
]
)
arrow_table = pyarrow.Table.from_pydict(
{
"bignumeric_col": [decimal.Decimal("123.456789101112131415")],
"bool_col": [True],
"bytes_col": [b"Hello,\x00World!"],
"date_col": [datetime.date(2021, 8, 9)],
"datetime_col": [datetime.datetime(2021, 8, 9, 13, 30, 44, 123456)],
"float64_col": [1.25],
"int64_col": [-7],
"numeric_col": [decimal.Decimal("-123.456789")],
"string_col": ["abcdefg"],
"time_col": [datetime.time(14, 21, 17, 123456)],
"timestamp_col": [
datetime.datetime(
2021, 8, 9, 13, 30, 44, 123456, tzinfo=datetime.timezone.utc
)
],
},
schema=arrow_schema,
)
nullable_schema = [
bigquery.SchemaField("bignumeric_col", "BIGNUMERIC"),
bigquery.SchemaField("bool_col", "BOOLEAN"),
bigquery.SchemaField("bytes_col", "BYTES"),
bigquery.SchemaField("date_col", "DATE"),
bigquery.SchemaField("datetime_col", "DATETIME"),
bigquery.SchemaField("float64_col", "FLOAT"),
bigquery.SchemaField("int64_col", "INT64"),
bigquery.SchemaField("numeric_col", "NUMERIC"),
bigquery.SchemaField("string_col", "STRING"),
bigquery.SchemaField("time_col", "TIME"),
bigquery.SchemaField("timestamp_col", "TIMESTAMP"),
]
mock_client = mock.create_autospec(bigquery.Client)
mock_client.project = "test-proj"
mock_api_request = mock.Mock()
mock_to_arrow = mock.Mock()
mock_to_arrow.return_value = arrow_table
rows = class_under_test(mock_client, mock_api_request, TEST_PATH, nullable_schema)
monkeypatch.setattr(rows, "to_arrow", mock_to_arrow)
df = rows.to_dataframe()
# Check for expected dtypes.
# Keep these in sync with tests/system/test_pandas.py
assert df.dtypes["bignumeric_col"].name == "object"
assert df.dtypes["bool_col"].name == "boolean"
assert df.dtypes["bytes_col"].name == "object"
assert df.dtypes["date_col"].name == "object"
assert df.dtypes["datetime_col"].name == "datetime64[ns]"
assert df.dtypes["float64_col"].name == "float64"
assert df.dtypes["int64_col"].name == "Int64"
assert df.dtypes["numeric_col"].name == "object"
assert df.dtypes["string_col"].name == "object"
assert df.dtypes["time_col"].name == "object"
assert df.dtypes["timestamp_col"].name == "datetime64[ns, UTC]"
# Check for expected values.
assert df["bignumeric_col"][0] == decimal.Decimal("123.456789101112131415")
assert df["bool_col"][0] # True
assert df["bytes_col"][0] == b"Hello,\x00World!"
# object is used by default, but we can use "datetime64[ns]" automatically
# when data is within the supported range.
# https://github.com/googleapis/python-bigquery/issues/861
assert df["date_col"][0] == datetime.date(2021, 8, 9)
assert df["datetime_col"][0] == pandas.to_datetime("2021-08-09 13:30:44.123456")
assert df["float64_col"][0] == 1.25
assert df["int64_col"][0] == -7
assert df["numeric_col"][0] == decimal.Decimal("-123.456789")
assert df["string_col"][0] == "abcdefg"
# Pandas timedelta64 might be a better choice for pandas time columns. Then
# they can more easily be combined with date columns to form datetimes.
# https://github.com/googleapis/python-bigquery/issues/862
assert df["time_col"][0] == datetime.time(14, 21, 17, 123456)
assert df["timestamp_col"][0] == pandas.to_datetime("2021-08-09 13:30:44.123456Z")
def test_to_dataframe_nullable_scalars_with_custom_dtypes(
monkeypatch, class_under_test
):
"""Passing in explicit dtypes is merged with default behavior."""
arrow_schema = pyarrow.schema(
[
pyarrow.field("int64_col", pyarrow.int64()),
pyarrow.field("other_int_col", pyarrow.int64()),
]
)
arrow_table = pyarrow.Table.from_pydict(
{"int64_col": [1000], "other_int_col": [-7]}, schema=arrow_schema,
)
nullable_schema = [
bigquery.SchemaField("int64_col", "INT64"),
bigquery.SchemaField("other_int_col", "INT64"),
]
mock_client = mock.create_autospec(bigquery.Client)
mock_client.project = "test-proj"
mock_api_request = mock.Mock()
mock_to_arrow = mock.Mock()
mock_to_arrow.return_value = arrow_table
rows = class_under_test(mock_client, mock_api_request, TEST_PATH, nullable_schema)
monkeypatch.setattr(rows, "to_arrow", mock_to_arrow)
df = rows.to_dataframe(dtypes={"other_int_col": "int8"})
assert df.dtypes["int64_col"].name == "Int64"
assert df["int64_col"][0] == 1000
assert df.dtypes["other_int_col"].name == "int8"
assert df["other_int_col"][0] == -7
def test_to_dataframe_arrays(monkeypatch, class_under_test):
arrow_schema = pyarrow.schema(
[pyarrow.field("int64_repeated", pyarrow.list_(pyarrow.int64()))]
)
arrow_table = pyarrow.Table.from_pydict(
{"int64_repeated": [[-1, 0, 2]]}, schema=arrow_schema,
)
nullable_schema = [
bigquery.SchemaField("int64_repeated", "INT64", mode="REPEATED"),
]
mock_client = mock.create_autospec(bigquery.Client)
mock_client.project = "test-proj"
mock_api_request = mock.Mock()
mock_to_arrow = mock.Mock()
mock_to_arrow.return_value = arrow_table
rows = class_under_test(mock_client, mock_api_request, TEST_PATH, nullable_schema)
monkeypatch.setattr(rows, "to_arrow", mock_to_arrow)
df = rows.to_dataframe()
assert df.dtypes["int64_repeated"].name == "object"
assert tuple(df["int64_repeated"][0]) == (-1, 0, 2)