forked from jackgoffinet/poe-vae
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
69 lines (51 loc) · 1.6 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
Plot training run.
"""
__date__ = "January 2021"
import matplotlib.pyplot as plt
plt.switch_backend('agg')
import numpy as np
import os
import sys
import torch
USAGE_STR = "Usage: $ python plot.py log_subdirectory [min_value]\n" + \
"Example: $ python plot.py 42282539 -1000.0"
LOGGING_DIR = 'logs'
AGG_FN = 'agg.pt'
if __name__ == '__main__':
if len(sys.argv) not in [2,3]:
print(USAGE_STR)
quit()
min_value = None
if len(sys.argv) == 3:
min_value = float(sys.argv[2])
fn = os.path.join(LOGGING_DIR, sys.argv[1], AGG_FN)
if not os.path.isfile(fn):
print('File {} does not exist!'.format(fn))
quit()
agg = torch.load(fn)
# Plot.
fig, ax = plt.subplots(figsize=(5,3))
train_elbo = -np.array(agg['train_loss'])
train_epoch = agg['train_epoch']
test_elbo = -np.array(agg['test_loss'])
test_epoch = agg['test_epoch']
train_mll = agg['train_mll']
train_mll_epoch = agg['train_mll_epoch']
test_mll = agg['test_mll']
test_mll_epoch = agg['test_mll_epoch']
plt.plot(train_epoch, train_elbo, c='mediumseagreen', alpha=0.3, label='train ELBO')
plt.plot(test_epoch, test_elbo, c='orchid', alpha=0.3, label='test ELBO')
plt.scatter(train_mll_epoch, train_mll, c='mediumseagreen', alpha=0.8, label='train MLL')
plt.scatter(test_mll_epoch, test_mll, c='orchid', alpha=0.8, label='test MLL')
plt.title("Run {}".format(sys.argv[1]))
plt.ylabel("MLL/ELBO")
plt.xlabel("Epoch")
plt.legend(loc='best')
plt.ylim(min_value, None)
plt.tight_layout()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
plt.savefig('training_run_'+sys.argv[1]+'.pdf')
plt.close('all')
###