-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPredict_prog.py
executable file
·211 lines (202 loc) · 8.56 KB
/
Predict_prog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 1 14:00:27 2021
@author: Gordon Huang
"""
import pandas as pd
import numpy as np
import math
import re
ahf_prog = pd.read_excel('AHF_outcome.xlsx')
ev = [0]*431
eve = [ev]*4
for i in range(431):
if(type(ahf_prog['Event 1'].astype('string')[i]) != pd._libs.missing.NAType):
eve[0][i] = 1
if(type(ahf_prog['Event 2'].astype('string')[i]) != pd._libs.missing.NAType):
eve[1][i] = 1
if(type(ahf_prog['Event 3'].astype('string')[i]) != pd._libs.missing.NAType):
eve[2][i] = 1
if(ahf_prog['Mortality'][i] == True):
eve[3][i] = 1
ahf_data = pd.read_excel("V2 lab.xlsx")
age_ahf = []
for i in range(433):
if(str(ahf_data.檢查日[i]).find("NaT") >= 0):
if(str(ahf_data.出生日[i]).find("NaT") >= 0):
age_ahf = np.append(age_ahf, "60")
else:
age_ahf = np.append(age_ahf, int(2007) - int(str(ahf_data.出生日[i])[:4]))
elif(str(ahf_data.出生日[i]).find("NaT") >= 0):
age_ahf = np.append(age_ahf, "60")
else:
age_ahf = np.append(age_ahf, int(str(ahf_data.檢查日[i])[:4]) - int(str(ahf_data.出生日[i])[:4]))
age_ahf = age_ahf.reshape(433,1)
sex_ahf = ahf_data.sex.str.replace('女','2')
sex_ahf = sex_ahf.str.replace('男','1')
sex_ahf = np.array(sex_ahf.str.replace(r'\D+','0',regex=True)).reshape(433,1)
for i in range(len(sex_ahf)):
if(math.isnan(sex_ahf[i:][0])):
print(i)
sex_ahf[i][0] = 0
age_ahf = np.concatenate((age_ahf, sex_ahf), axis=1)
age_ahf = np.concatenate((age_ahf, np.array([1]*433).reshape(433,1)), axis=1)
AHF_data = pd.read_csv('AHF_noted.csv', header=None)
AHF_data = pd.concat([AHF_data[range(1000)], AHF_data[1002]],axis=1)
AHF_data= AHF_data.rename(columns={1002:1000})
array = np.empty([0,1004])
for i in range(len(AHF_data)):
if(re.search(r'AHF\d*',AHF_data[0][i])):
a = re.search(r'AHF\d*',AHF_data[0][i])
n = a.group(0)[3:6]
if(ahf_data['編號'].str.contains(a.group(0)).any()):
b = np.append(AHF_data.iloc[i,:998], age_ahf[pd.Index(ahf_data['編號']).get_loc(a.group(0))])[:1000].reshape(1,1000)
b = np.append(b, np.array(eve)[:,int(n)-1])
array = np.append(array,[b],axis=0)
import tensorflow as tf
from sklearn.model_selection import train_test_split
from keras import Input, Model
from keras.models import Sequential
from keras.callbacks import EarlyStopping
from keras.layers import Conv1D, Dense, MaxPool1D, Flatten, LSTM, BatchNormalization, Dropout, MaxoutDense, GRU, Concatenate, Activation, GlobalAveragePooling1D, Lambda
from sklearn.metrics import confusion_matrix, accuracy_score, roc_curve, auc
import matplotlib.pyplot as plt
from random import randint
tpr = dict()
fpr = dict()
roc_auc = dict()
X_train, X_test, y_train, y_test = train_test_split(array[:,1:-1], array[:,-1], test_size = 0.2, random_state = 1)
X_train = X_train.reshape(len(X_train), 1002, 1).astype('float64')
X_test = X_test.reshape(len(X_test), 1002, 1).astype('float64')
y_train = y_train.reshape(len(y_train),).astype('int')
y_test = y_test.reshape(len(y_test),).astype('int')
def get(x):
return x[:,:-5]
def left(x):
return x[:,-3:]
input = Input(shape=(1002,1))
x1 = Lambda(get, (997,1))(input)
x2 = Lambda(get, (997,1))(input)
x3 = Lambda(get, (997,1))(input)
x4 = Lambda(get, (997,1))(input)
x5 = Lambda(get, (997,1))(input)
x6 = Lambda(get, (997,1))(input)
x7 = Lambda(get, (997,1))(input)
x8 = Lambda(get, (997,1))(input)
x9 = Lambda(get, (997,1))(input)
x10 = Lambda(get, (997,1))(input)
x11 = Lambda(get, (997,1))(input)
x12 = Lambda(get, (997,1))(input)
x_as = Lambda(left, (2,1))(input)
x1 = Conv1D(256, 2, activation=('relu'))(input)
x2 = Conv1D(256, 3, activation=('relu'))(input)
x3 = Conv1D(128, 2, activation=('relu'))(input)
x4 = Conv1D(128, 3, activation=('relu'))(input)
x5 = Conv1D(256, 4, activation=('relu'))(input)
x6 = Conv1D(128, 4, activation=('relu'))(input)
x7 = Conv1D(64, 2, activation=('relu'))(input)
x8 = Conv1D(64, 3, activation=('relu'))(input)
x9 = Conv1D(64, 4, activation=('relu'))(input)
x10 = Conv1D(32, 2, activation=('relu'))(input)
x11 = Conv1D(32, 3, activation=('relu'))(input)
x12 = Conv1D(32, 4, activation=('relu'))(input)
x1 = MaxPool1D()(x1)
x2 = MaxPool1D()(x2)
x3 = MaxPool1D()(x3)
x4 = MaxPool1D()(x4)
x5 = MaxPool1D()(x5)
x6 = MaxPool1D()(x6)
x7 = MaxPool1D()(x7)
x8 = MaxPool1D()(x8)
x9 = MaxPool1D()(x9)
x10 = MaxPool1D()(x10)
x11 = MaxPool1D()(x11)
x12 = MaxPool1D()(x12)
x1 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x1)
x2 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x2)
x3 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x3)
x4 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x4)
x5 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x5)
x6 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x6)
x7 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x7)
x8 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x8)
x9 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x9)
x10 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x10)
x11 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x11)
x12 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x12)
x1 = Conv1D(256, 2, activation=('relu'))(x1)
x2 = Conv1D(256, 3, activation=('relu'))(x2)
x3 = Conv1D(128, 2, activation=('relu'))(x3)
x4 = Conv1D(128, 3, activation=('relu'))(x4)
x5 = Conv1D(256, 4, activation=('relu'))(x5)
x6 = Conv1D(128, 4, activation=('relu'))(x6)
x7 = Conv1D(64, 2, activation=('relu'))(x7)
x8 = Conv1D(64, 3, activation=('relu'))(x8)
x9 = Conv1D(64, 4, activation=('relu'))(x9)
x10 = Conv1D(32, 2, activation=('relu'))(x10)
x11 = Conv1D(32, 3, activation=('relu'))(x11)
x12 = Conv1D(32, 4, activation=('relu'))(x12)
x1 = MaxPool1D()(x1)
x2 = MaxPool1D()(x2)
x3 = MaxPool1D()(x3)
x4 = MaxPool1D()(x4)
x5 = MaxPool1D()(x5)
x6 = MaxPool1D()(x6)
x7 = MaxPool1D()(x7)
x8 = MaxPool1D()(x8)
x9 = MaxPool1D()(x9)
x10 = MaxPool1D()(x10)
x11 = MaxPool1D()(x11)
x12 = MaxPool1D()(x12)
x1 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x1)
x2 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x2)
x3 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x3)
x4 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x4)
x5 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x5)
x6 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x6)
x7 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x7)
x8 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x8)
x9 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x9)
x10 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x10)
x11 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x11)
x12 = BatchNormalization(momentum=0.9, epsilon=1e-5, axis=1)(x12)
x1 = Dense(units=64, activation=('relu'))(x1)
x2 = Dense(units=64, activation=('relu'))(x2)
x3 = Dense(units=64, activation=('relu'))(x3)
x4 = Dense(units=64, activation=('relu'))(x4)
x5 = Dense(units=64, activation=('relu'))(x5)
x6 = Dense(units=64, activation=('relu'))(x6)
x7 = Dense(units=64, activation=('relu'))(x7)
x8 = Dense(units=64, activation=('relu'))(x8)
x9 = Dense(units=64, activation=('relu'))(x9)
x10 = Dense(units=64, activation=('relu'))(x10)
x11 = Dense(units=64, activation=('relu'))(x11)
x12 = Dense(units=64, activation=('relu'))(x12)
x_as = Dense(units=64, activation=('relu'))(x_as)
x = Concatenate(axis=1)([x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x_as])
x = Dense(units=8, activation=('relu'))(x)
x = Flatten()(x)
x = Dense(units=1, activation=('sigmoid'))(x)
md = Model(input, x)
stop = EarlyStopping(monitor='loss', patience=9)
md.compile(optimizer='AdaGrad', loss = 'binary_crossentropy', metrics = ['accuracy'])
md.fit(X_train, y_train, batch_size=32, epochs=100, verbose=True, callbacks=[stop])
y_pred = md.predict([X_test,])
y_pred = (y_pred > 0.5)
#print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
cm = confusion_matrix(y_test, y_pred)
print(cm)
y_ravel = md.predict(X_test).ravel()
fpr, tpr, _ = roc_curve(y_test, y_ravel)
roc_auc = auc(fpr, tpr)
plt.figure()
lw = 2
plt.plot(fpr, tpr, lw=lw, label='ROC curve (area = %0.2f)' % roc_auc)
plt.plot([0, 1], [0, 1], color='black', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic')
plt.legend(loc="lower right")
plt.savefig('ROC_prognosis_no_events.png')