This repository has been archived by the owner on Sep 9, 2024. It is now read-only.
forked from dask-contrib/dask-sql
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.rs
252 lines (220 loc) · 9.01 KB
/
optimizer.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
// Declare optimizer modules
pub mod decorrelate_where_exists;
pub mod decorrelate_where_in;
pub mod dynamic_partition_pruning;
pub mod join_reorder;
pub mod utils;
use std::sync::Arc;
use datafusion_python::{
datafusion_common::DataFusionError,
datafusion_expr::LogicalPlan,
datafusion_optimizer::{
eliminate_cross_join::EliminateCrossJoin,
eliminate_limit::EliminateLimit,
eliminate_outer_join::EliminateOuterJoin,
eliminate_project::EliminateProjection,
filter_null_join_keys::FilterNullJoinKeys,
optimizer::{Optimizer, OptimizerRule},
push_down_filter::PushDownFilter,
push_down_limit::PushDownLimit,
push_down_projection::PushDownProjection,
rewrite_disjunctive_predicate::RewriteDisjunctivePredicate,
scalar_subquery_to_join::ScalarSubqueryToJoin,
simplify_expressions::SimplifyExpressions,
unwrap_cast_in_comparison::UnwrapCastInComparison,
OptimizerContext,
},
};
use decorrelate_where_exists::DecorrelateWhereExists;
use decorrelate_where_in::DecorrelateWhereIn;
use dynamic_partition_pruning::DynamicPartitionPruning;
use join_reorder::JoinReorder;
use log::{debug, trace};
/// Houses the optimization logic for Dask-SQL. This optimization controls the optimizations
/// and their ordering in regards to their impact on the underlying `LogicalPlan` instance
pub struct DaskSqlOptimizer {
optimizer: Optimizer,
}
impl DaskSqlOptimizer {
/// Creates a new instance of the DaskSqlOptimizer with all the DataFusion desired
/// optimizers as well as any custom `OptimizerRule` trait impls that might be desired.
pub fn new() -> Self {
debug!("Creating new instance of DaskSqlOptimizer");
let rules: Vec<Arc<dyn OptimizerRule + Sync + Send>> = vec![
Arc::new(SimplifyExpressions::new()),
Arc::new(UnwrapCastInComparison::new()),
// Arc::new(ReplaceDistinctWithAggregate::new()),
Arc::new(DecorrelateWhereExists::new()),
Arc::new(DecorrelateWhereIn::new()),
Arc::new(ScalarSubqueryToJoin::new()),
//Arc::new(ExtractEquijoinPredicate::new()),
// simplify expressions does not simplify expressions in subqueries, so we
// run it again after running the optimizations that potentially converted
// subqueries to joins
Arc::new(SimplifyExpressions::new()),
// Arc::new(MergeProjection::new()),
Arc::new(RewriteDisjunctivePredicate::new()),
// Arc::new(EliminateDuplicatedExpr::new()),
// TODO: need to handle EmptyRelation for GPU cases
// Arc::new(EliminateFilter::new()),
Arc::new(EliminateCrossJoin::new()),
// Arc::new(CommonSubexprEliminate::new()),
Arc::new(EliminateLimit::new()),
// Arc::new(PropagateEmptyRelation::new()),
Arc::new(FilterNullJoinKeys::default()),
Arc::new(EliminateOuterJoin::new()),
// Filters can't be pushed down past Limits, we should do PushDownFilter after PushDownLimit
Arc::new(PushDownLimit::new()),
Arc::new(PushDownFilter::new()),
// Arc::new(SingleDistinctToGroupBy::new()),
// Dask-SQL specific optimizations
Arc::new(JoinReorder::default()),
// The previous optimizations added expressions and projections,
// that might benefit from the following rules
Arc::new(SimplifyExpressions::new()),
Arc::new(UnwrapCastInComparison::new()),
// Arc::new(CommonSubexprEliminate::new()),
Arc::new(PushDownProjection::new()),
Arc::new(EliminateProjection::new()),
// PushDownProjection can pushdown Projections through Limits, do PushDownLimit again.
Arc::new(PushDownLimit::new()),
];
Self {
optimizer: Optimizer::with_rules(rules),
}
}
// Create a separate instance of this optimization rule, since we want to ensure that it only
// runs one time
pub fn dynamic_partition_pruner() -> Self {
let rule: Vec<Arc<dyn OptimizerRule + Sync + Send>> =
vec![Arc::new(DynamicPartitionPruning::new())];
Self {
optimizer: Optimizer::with_rules(rule),
}
}
/// Iterates through the configured `OptimizerRule`(s) to transform the input `LogicalPlan`
/// to its final optimized form
pub(crate) fn optimize(&self, plan: LogicalPlan) -> Result<LogicalPlan, DataFusionError> {
let config = OptimizerContext::new();
self.optimizer.optimize(&plan, &config, Self::observe)
}
/// Iterates once through the configured `OptimizerRule`(s) to transform the input `LogicalPlan`
/// to its final optimized form
pub(crate) fn optimize_once(&self, plan: LogicalPlan) -> Result<LogicalPlan, DataFusionError> {
let mut config = OptimizerContext::new();
config = OptimizerContext::with_max_passes(config, 1);
self.optimizer.optimize(&plan, &config, Self::observe)
}
fn observe(optimized_plan: &LogicalPlan, optimization: &dyn OptimizerRule) {
trace!(
"== AFTER APPLYING RULE {} ==\n{}\n",
optimization.name(),
optimized_plan.display_indent()
);
}
}
#[cfg(test)]
mod tests {
use std::{any::Any, collections::HashMap, sync::Arc};
use datafusion_python::{
datafusion::arrow::datatypes::{DataType, Field, Schema, SchemaRef},
datafusion_common::{config::ConfigOptions, DataFusionError, Result},
datafusion_expr::{AggregateUDF, LogicalPlan, ScalarUDF, TableSource},
datafusion_sql::{
planner::{ContextProvider, SqlToRel},
sqlparser::{ast::Statement, parser::Parser},
TableReference,
},
};
use crate::{dialect::DaskDialect, sql::optimizer::DaskSqlOptimizer};
#[test]
fn subquery_filter_with_cast() -> Result<()> {
// regression test for https://github.com/apache/arrow-datafusion/issues/3760
let sql = "SELECT col_int32 FROM test \
WHERE col_int32 > (\
SELECT AVG(col_int32) FROM test \
WHERE col_utf8 BETWEEN '2002-05-08' \
AND (cast('2002-05-08' as date) + interval '5 days')\
)";
let plan = test_sql(sql)?;
assert!(format!("{:?}", plan).contains(r#"<= Date32("11820")"#));
Ok(())
}
fn test_sql(sql: &str) -> Result<LogicalPlan> {
// parse the SQL
let dialect = DaskDialect {};
let ast: Vec<Statement> = Parser::parse_sql(&dialect, sql).unwrap();
let statement = &ast[0];
// create a logical query plan
let schema_provider = MySchemaProvider::new();
let sql_to_rel = SqlToRel::new(&schema_provider);
let plan = sql_to_rel.sql_statement_to_plan(statement.clone()).unwrap();
// optimize the logical plan
let optimizer = DaskSqlOptimizer::new();
optimizer.optimize(plan)
}
struct MySchemaProvider {
options: ConfigOptions,
}
impl MySchemaProvider {
fn new() -> Self {
Self {
options: ConfigOptions::default(),
}
}
}
impl ContextProvider for MySchemaProvider {
fn options(&self) -> &ConfigOptions {
&self.options
}
fn get_table_provider(
&self,
name: TableReference,
) -> datafusion_python::datafusion_common::Result<Arc<dyn TableSource>> {
let table_name = name.table();
if table_name.starts_with("test") {
let schema = Schema::new_with_metadata(
vec![
Field::new("col_int32", DataType::Int32, true),
Field::new("col_uint32", DataType::UInt32, true),
Field::new("col_utf8", DataType::Utf8, true),
Field::new("col_date32", DataType::Date32, true),
Field::new("col_date64", DataType::Date64, true),
],
HashMap::new(),
);
Ok(Arc::new(MyTableSource {
schema: Arc::new(schema),
}))
} else {
Err(DataFusionError::Plan("table does not exist".to_string()))
}
}
fn get_function_meta(&self, _name: &str) -> Option<Arc<ScalarUDF>> {
None
}
fn get_aggregate_meta(&self, _name: &str) -> Option<Arc<AggregateUDF>> {
None
}
fn get_variable_type(&self, _variable_names: &[String]) -> Option<DataType> {
None
}
fn get_window_meta(
&self,
_name: &str,
) -> Option<Arc<datafusion_python::datafusion_expr::WindowUDF>> {
None
}
}
struct MyTableSource {
schema: SchemaRef,
}
impl TableSource for MyTableSource {
fn as_any(&self) -> &dyn Any {
self
}
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}
}