You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I wanted to apply temperature scaling to a segmentation task with 1 class (So a pixel belongs to this class or not).
Instead of CrossEntropyLoss I am using BCEWithLogitsLoss and I had to disable _ECELoss due to some bugs I could not fix.
However, the actual evaluation score performance is much worse after temperature scaling then before.
Furthermore, I noticed that the temperature during optimization becomes very high.
What are your thoughts on this?
It does not seems correct that the temperature becomes this high?
Is temperature scaling simply not suited for segmentation? Did you do tests on some segmentation tasks?
We use if for segmentation, with the CrossEntropyLoss. However, I have problems with the L-BFGS myself – I believe it is because the loss is locally linear around the starting temperature; the loss is evaluated many times, although only one optimizer step is performed, and it fails to go far from the starting point.
Hi,
I wanted to apply temperature scaling to a segmentation task with 1 class (So a pixel belongs to this class or not).
Instead of CrossEntropyLoss I am using BCEWithLogitsLoss and I had to disable _ECELoss due to some bugs I could not fix.
However, the actual evaluation score performance is much worse after temperature scaling then before.
Furthermore, I noticed that the temperature during optimization becomes very high.
What are your thoughts on this?
It does not seems correct that the temperature becomes this high?
Is temperature scaling simply not suited for segmentation? Did you do tests on some segmentation tasks?
Best
Karol
The text was updated successfully, but these errors were encountered: