This repository was archived by the owner on Aug 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathcluster.go
201 lines (171 loc) · 5.2 KB
/
cluster.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
package cluster
import (
"errors"
"math/rand"
"net/http"
"sort"
"sync/atomic"
"time"
opentracing "github.com/opentracing/opentracing-go"
)
var counter uint32
var (
Mode NodeMode
Manager ClusterManager
Tracer opentracing.Tracer
InsufficientShardsAvailable = NewError(http.StatusServiceUnavailable, errors.New("Insufficient shards available."))
)
func Init(name, version string, started time.Time, apiScheme string, apiPort int) {
thisNode := HTTPNode{
Name: name,
ApiPort: apiPort,
ApiScheme: apiScheme,
Started: started,
Version: version,
Primary: primary,
Priority: 10000,
Mode: Mode,
PrimaryChange: time.Now(),
StateChange: time.Now(),
Updated: time.Now(),
local: true,
}
if Mode == ModeQuery {
thisNode.Priority = 0
}
if Mode == ModeDev {
Manager = NewSingleNodeManager(thisNode)
} else { // Shard or Query mode
Manager = NewMemberlistManager(thisNode)
}
// initialize our "primary" state metric.
nodePrimary.Set(primary)
}
func Stop() {
Manager.Stop()
}
func Start() {
Manager.Start()
}
type partitionCandidates struct {
priority int
nodes []Node
}
// MembersForQuery returns the list of nodes to broadcast requests to
// If partitions are assigned to nodes in groups
// (a[0,1], b[0,1], c[2,3], d[2,3] as opposed to a[0,1], b[0,2], c[1,3], d[2,3]),
// only 1 member per partition is returned.
// The nodes are selected based on priority, preferring thisNode if it
// has the lowest prio, otherwise using a random selection from all
// nodes with the lowest prio.
func MembersForQuery() ([]Node, error) {
thisNode := Manager.ThisNode()
// If we are running in dev mode, just return thisNode
if Mode == ModeDev {
return []Node{thisNode}, nil
}
// store the available nodes for each partition, grouped by
// priority
membersMap := make(map[int32]*partitionCandidates)
if thisNode.IsReady() {
for _, part := range thisNode.GetPartitions() {
membersMap[part] = &partitionCandidates{
priority: thisNode.GetPriority(),
nodes: []Node{thisNode},
}
}
}
for _, member := range Manager.MemberList(true, true) {
if member.GetName() == thisNode.GetName() {
continue
}
for _, part := range member.GetPartitions() {
if _, ok := membersMap[part]; !ok {
membersMap[part] = &partitionCandidates{
priority: member.GetPriority(),
nodes: []Node{member},
}
continue
}
priority := member.GetPriority()
if membersMap[part].priority == priority {
membersMap[part].nodes = append(membersMap[part].nodes, member)
} else if membersMap[part].priority > priority {
// this node has higher priority (lower number) then previously seen candidates
membersMap[part] = &partitionCandidates{
priority: priority,
nodes: []Node{member},
}
}
}
}
if len(membersMap) < minAvailableShards {
return nil, InsufficientShardsAvailable
}
selectedMembers := make(map[string]struct{})
answer := make([]Node, 0)
// we want to get the minimum number of nodes
// needed to cover all partitions
count := int(atomic.AddUint32(&counter, 1))
LOOP:
// for every partition...
for _, candidates := range membersMap {
// prefer the local node if it serves this partition
if candidates.nodes[0].GetName() == thisNode.GetName() {
if _, ok := selectedMembers[thisNode.GetName()]; !ok {
selectedMembers[thisNode.GetName()] = struct{}{}
answer = append(answer, thisNode)
}
continue LOOP
}
// for remote nodes, try to pick one we've already included
for _, n := range candidates.nodes {
if _, ok := selectedMembers[n.GetName()]; ok {
continue LOOP
}
}
// if no nodes have been selected yet then grab a node from
// the set of available nodes in such a way that nodes are
// weighted fairly across MembersForQuery calls
selected := candidates.nodes[count%len(candidates.nodes)]
selectedMembers[selected.GetName()] = struct{}{}
answer = append(answer, selected)
}
return answer, nil
}
// MembersForSpeculativeQuery returns a prioritized list of nodes for each shard group
// keyed by the first (lowest) partition of their shard group
func MembersForSpeculativeQuery() (map[int32][]Node, error) {
thisNode := Manager.ThisNode()
allNodes := Manager.MemberList(true, true)
membersMap := make(map[int32][]Node)
// If we are running in dev mode, just return thisNode
if Mode == ModeDev {
membersMap[0] = []Node{thisNode}
return membersMap, nil
}
peerPartitions := 0
// store the available nodes for each partition group
for _, member := range allNodes {
partitions := member.GetPartitions()
memberStartPartition := partitions[0]
if _, ok := membersMap[memberStartPartition]; !ok {
peerPartitions += len(partitions)
}
membersMap[memberStartPartition] = append(membersMap[memberStartPartition], member)
}
if peerPartitions < minAvailableShards {
return nil, InsufficientShardsAvailable
}
for _, shard := range membersMap {
// Shuffle to avoid always choosing the same peer first
for i := len(shard) - 1; i > 0; i-- {
j := rand.Intn(i + 1)
shard[i], shard[j] = shard[j], shard[i]
}
sort.Slice(shard, func(i, j int) bool {
return shard[i].GetPriority() < shard[j].GetPriority()
})
}
return membersMap, nil
}