This repository was archived by the owner on Aug 23, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathseriesaggregators.go
278 lines (246 loc) · 6.03 KB
/
seriesaggregators.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
package expr
// aggregation functions for series of data
import (
"math"
"sort"
"github.com/grafana/metrictank/api/models"
"github.com/grafana/metrictank/schema"
)
type seriesAggregator struct {
function crossSeriesAggFunc
name string
}
type crossSeriesAggFunc func(in []models.Series, out *[]schema.Point)
func getCrossSeriesAggFunc(c string) crossSeriesAggFunc {
switch c {
case "average", "avg":
return crossSeriesAvg
case "avg_zero":
return crossSeriesAvgZero
case "min":
return crossSeriesMin
case "max":
return crossSeriesMax
case "sum", "total":
return crossSeriesSum
case "multiply":
return crossSeriesMultiply
case "median":
return crossSeriesMedian
case "diff":
return crossSeriesDiff
case "stddev":
return crossSeriesStddev
case "rangeOf", "range":
return crossSeriesRange
case "last", "current":
return crossSeriesLast
case "count":
return crossSeriesCount
}
return nil
}
// crossSeriesAvg computes the average across all the series
// using the number of non-null datapoints
func crossSeriesAvg(in []models.Series, out *[]schema.Point) {
counts := make([]int, len(in[0].Datapoints))
for i := 0; i < len(in[0].Datapoints); i++ {
*out = append(*out, in[0].Datapoints[i])
if !math.IsNaN(in[0].Datapoints[i].Val) {
counts[i]++
}
}
for i := 1; i < len(in); i++ {
dps := in[i].Datapoints
for j := 0; j < len(in[i].Datapoints); j++ {
p := dps[j].Val
if !math.IsNaN(p) {
if math.IsNaN((*out)[j].Val) {
(*out)[j].Val = p
} else {
(*out)[j].Val += p
}
counts[j]++
}
}
}
for i := range *out {
if !math.IsNaN((*out)[i].Val) {
(*out)[i].Val /= float64(counts[i])
}
}
}
// crossSeriesAvgZero computes the average across all the series
// treating nulls as valid points with value 0.
// So, if the original datapoints were [1, 1, 1, 1, null],
// crossSeriesAvg would compute the new datapoint as 4/4=1 while
// crossSeriesAvgZero would compute it as 4/5=0.8
func crossSeriesAvgZero(in []models.Series, out *[]schema.Point) {
crossSeriesSum(in, out)
for i := range *out {
if !math.IsNaN((*out)[i].Val) {
(*out)[i].Val /= float64(len(in))
} else {
(*out)[i].Val = 0
}
}
}
func crossSeriesMin(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[0].Datapoints); i++ {
*out = append(*out, in[0].Datapoints[i])
}
for i := 1; i < len(in); i++ {
dps := in[i].Datapoints
for j := 0; j < len(in[i].Datapoints); j++ {
p := dps[j].Val
if !math.IsNaN(p) {
v := (*out)[j].Val
if math.IsNaN(v) || v > p {
(*out)[j].Val = p
}
}
}
}
}
func crossSeriesMax(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[0].Datapoints); i++ {
*out = append(*out, in[0].Datapoints[i])
}
for i := 1; i < len(in); i++ {
dps := in[i].Datapoints
for j := 0; j < len(in[i].Datapoints); j++ {
p := dps[j].Val
if !math.IsNaN(p) {
v := (*out)[j].Val
if math.IsNaN(v) || v < p {
(*out)[j].Val = p
}
}
}
}
}
func crossSeriesSum(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[0].Datapoints); i++ {
*out = append(*out, in[0].Datapoints[i])
}
for i := 1; i < len(in); i++ {
dps := in[i].Datapoints
for j := 0; j < len(in[i].Datapoints); j++ {
p := dps[j].Val
if !math.IsNaN(p) {
if math.IsNaN((*out)[j].Val) {
(*out)[j].Val = p
} else {
(*out)[j].Val += p
}
}
}
}
}
func crossSeriesMultiply(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[0].Datapoints); i++ {
*out = append(*out, in[0].Datapoints[i])
}
for i := 1; i < len(in); i++ {
dps := in[i].Datapoints
for j := 0; j < len(in[i].Datapoints); j++ {
(*out)[j].Val *= dps[j].Val
}
}
}
func crossSeriesMedian(in []models.Series, out *[]schema.Point) {
vals := make([]float64, 0, len(in))
for i := 0; i < len(in[0].Datapoints); i++ {
vals = vals[:0]
for j := 0; j < len(in); j++ {
p := in[j].Datapoints[i].Val
if !math.IsNaN(p) {
vals = append(vals, p)
}
}
point := schema.Point{
Ts: in[0].Datapoints[i].Ts,
}
if len(vals) == 0 {
point.Val = math.NaN()
} else {
sort.Float64s(vals)
mid := len(vals) / 2
if len(vals)%2 == 0 {
point.Val = (vals[mid-1] + vals[mid]) / 2
} else {
point.Val = vals[mid]
}
}
*out = append(*out, point)
}
}
func crossSeriesDiff(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[0].Datapoints); i++ {
*out = append(*out, in[0].Datapoints[i])
}
for i := 1; i < len(in); i++ {
for j := 0; j < len(in[i].Datapoints); j++ {
p := in[i].Datapoints[j].Val
if !math.IsNaN(p) {
if math.IsNaN((*out)[j].Val) {
(*out)[j].Val = p
} else {
(*out)[j].Val -= p
}
}
}
}
}
func crossSeriesStddev(in []models.Series, out *[]schema.Point) {
crossSeriesAvg(in, out)
for i := 0; i < len(in[0].Datapoints); i++ {
if !math.IsNaN((*out)[i].Val) {
num := float64(0)
totalDeviationSquared := float64(0)
for j := 0; j < len(in); j++ {
p := in[j].Datapoints[i].Val
if !math.IsNaN(p) {
num++
deviation := p - (*out)[i].Val
totalDeviationSquared += deviation * deviation
}
}
(*out)[i].Val = math.Sqrt(totalDeviationSquared / num)
}
}
}
func crossSeriesRange(in []models.Series, out *[]schema.Point) {
mins := make([]schema.Point, 0, len(in[0].Datapoints))
crossSeriesMax(in, out)
crossSeriesMin(in, &mins)
for i := 0; i < len(in[0].Datapoints); i++ {
(*out)[i].Val -= mins[i].Val
}
}
func crossSeriesLast(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[len(in)-1].Datapoints); i++ {
dp := in[len(in)-1].Datapoints[i]
for j := len(in) - 2; j >= 0 && math.IsNaN(dp.Val); j-- {
dp = in[j].Datapoints[i]
}
*out = append(*out, dp)
}
}
func crossSeriesCount(in []models.Series, out *[]schema.Point) {
for i := 0; i < len(in[0].Datapoints); i++ {
point := schema.Point{
Ts: in[0].Datapoints[i].Ts,
}
point.Val = 0
for j := 0; j < len(in); j++ {
if !math.IsNaN(in[j].Datapoints[i].Val) {
point.Val++
}
}
if point.Val == 0 {
point.Val = math.NaN()
}
*out = append(*out, point)
}
}