You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
class Solution {
public:
int numSquares(int n) {
while (n % 4 == 0) n /= 4;
if (n % 8 == 7) return 4;
for (int a = 0; a * a <= n; ++a) {
int b = sqrt(n - a * a);
if (a * a + b * b == n) {
return !!a + !!b;
}
}
return 3;
}
};
class Solution {
public:
int numSquares(int n) {
vector<int> dp(1, 0);
while (dp.size() <= n) {
int m = dp.size(), val = INT_MAX;
for (int i = 1; i * i <= m; ++i) {
val = min(val, dp[m - i * i] + 1);
}
dp.push_back(val);
}
return dp.back();
}
};
class Solution {
public:
int numSquares(int n) {
int res = n, num = 2;
while (num * num <= n) {
int a = n / (num * num), b = n % (num * num);
res = min(res, a + numSquares(b));
++num;
}
return res;
}
};
讨论:解法二三四的运算效率真的不高,强推解法一,高效又易懂,如果想强行优化后三个算法,可以将解法一的前两个 if 判断加到后三个的算法的开头,能很大的提高运算效率。
Given a positive integer n , find the least number of perfect square numbers (for example,
1, 4, 9, 16, ...
) which sum to n.Example 1:
Example 2:
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
又是超哥一个人辛苦的更新题目,一个人托起 LeetCode 免费题的一片天空啊,赞一个~ 这道题说是给我们一个正整数,求它最少能由几个完全平方数组成。这道题是考察四平方和定理,to be honest, 这是我第一次听说这个定理,天啦撸,我的数学是语文老师教的么?! 闲话不多扯,回来做题。先来看第一种很高效的方法,根据四平方和定理,任意一个正整数均可表示为4个整数的平方和,其实是可以表示为4个以内的平方数之和,那么就是说返回结果只有 1,2,3 或4其中的一个,首先我们将数字化简一下,由于一个数如果含有因子4,那么我们可以把4都去掉,并不影响结果,比如2和8,3和12等等,返回的结果都相同,读者可自行举更多的栗子。还有一个可以化简的地方就是,如果一个数除以8余7的话,那么肯定是由4个完全平方数组成,这里就不证明了,因为我也不会证明,读者可自行举例验证。那么做完两步后,一个很大的数有可能就会变得很小了,大大减少了运算时间,下面我们就来尝试的将其拆为两个平方数之和,如果拆成功了那么就会返回1或2,因为其中一个平方数可能为0. (注:由于输入的n是正整数,所以不存在两个平方数均为0的情况)。注意下面的 !!a + !!b 这个表达式,可能很多人不太理解这个的意思,其实很简单,感叹号!表示逻辑取反,那么一个正整数逻辑取反为0,再取反为1,所以用两个感叹号!!的作用就是看a和b是否为正整数,都为正整数的话返回2,只有一个是正整数的话返回1,参见代码如下:
解法一:
这道题远不止这一种解法,我们还可以用动态规划 Dynamic Programming 来做,我们建立一个长度为 n+1 的一维dp数组,将第一个值初始化为0,其余值都初始化为 INT_MAX, i从0循环到n,j从1循环到 i+jj <= n 的位置,然后每次更新 dp[i+jj] 的值,动态更新 dp 数组,其中 dp[i] 表示正整数i能少能由多个完全平方数组成,那么我们求n,就是返回 dp[n] 即可,也就是 dp 数组的最后一个数字。需要注意的是这里的写法,i必须从0开始,j必须从1开始,因为我们的初衷是想用 dp[i] 来更新 dp[i + j * j],如果 i=0, j=1 了,那么 dp[i] 和 dp[i + j * j] 就相等了,怎么能用本身 dp 值加1来更新自身呢,参见代码如下:
解法二:
下面再来看一种 DP 解法,这种解法跟上面有些不同,上面那种解法是初始化了整个长度为 n+1 的 dp 数字,但是初始化的顺序不定的,而这个种方法只初始化了第一个值为0,那么在循环里计算,每次增加一个 dp 数组的长度,里面那个 for 循环一次循环结束就算好下一个数由几个完全平方数组成,直到增加到第 n+1 个,返回即可,想更直观的看这两种DP方法的区别,建议每次循环后都打印出 dp 数字的值来观察其更新的顺序,参见代码如下:
解法三:
最后我们来介绍一种递归 Recursion 的解法,这种方法的好处是写法简洁,但是运算效率不敢恭维。我们的目的是遍历所有比n小的完全平方数,然后对n与完全平方数的差值递归调用函数,目的是不断更新最终结果,知道找到最小的那个,参见代码如下:
解法四:
讨论:解法二三四的运算效率真的不高,强推解法一,高效又易懂,如果想强行优化后三个算法,可以将解法一的前两个 if 判断加到后三个的算法的开头,能很大的提高运算效率。
类似题目:
Count Primes
Ugly Number II
参考资料:
https://leetcode.com/problems/perfect-squares/
http://bookshadow.com/weblog/2015/09/09/leetcode-perfect-squares/
https://leetcode.com/problems/perfect-squares/discuss/71505/Simple-Java-DP-Solution
https://leetcode.com/problems/perfect-squares/discuss/71512/Static-DP-C%2B%2B-12-ms-Python-172-ms-Ruby-384-ms
https://leetcode.com/problems/perfect-squares/discuss/71488/Summary-of-4-different-solutions-(BFS-DP-static-DP-and-mathematics)
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: