We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Find the sum of all left leaves in a given binary tree.
Example:
3 / \ 9 20 / \ 15 7 There are two left leaves in the binary tree, with values 9 and 15 respectively. Return 24.
这道题让我们求一棵二叉树的所有左子叶的和,那么看到这道题我们知道这肯定是考二叉树的遍历问题,那么最简洁的写法肯定是用递归,由于我们只需要累加左子叶之和,那么我们在进入递归函数的时候需要知道当前结点是否是左子节点,如果是左子节点,而且该左子节点再没有子节点了说明其是左子叶,那么我们将其值加入结果res中,我们用一个bool型的变量,如果为true说明当前结点是左子节点,若为false则说明是右子节点,不做特殊处理,整个来说就是个递归的先序遍历的写法,参见代码如下:
解法一:
class Solution { public: int sumOfLeftLeaves(TreeNode* root) { if (!root || (!root->left && !root->right)) return 0; int res = 0; helper(root->left, true, res); helper(root->right, false, res); return res; } void helper(TreeNode* node, bool left, int& res) { if (!node) return; if (!node->left && !node->right && left) res += node->val; helper(node->left, true, res); helper(node->right, false, res); } };
我们还可以写的更简洁一些,不需要写其他的函数,直接在原函数中检查当前节点的左子节点是否是左子叶,如果是的话,则返回左子叶的值加上对当前结点的右子节点调用递归的结果;如果不是的话,我们对左右子节点分别调用递归函数,返回二者之和,参见代码如下:
解法二:
class Solution { public: int sumOfLeftLeaves(TreeNode* root) { if (!root) return 0; if (root->left && !root->left->left && !root->left->right) { return root->left->val + sumOfLeftLeaves(root->right); } return sumOfLeftLeaves(root->left) + sumOfLeftLeaves(root->right); } };
我们也可以使用迭代来解,因为这道题的本质是遍历二叉树,所以我们可以用层序遍历的迭代写法,利用queue来辅助,注意对左子叶的判断和处理,参见代码如下:
解法三:
class Solution { public: int sumOfLeftLeaves(TreeNode* root) { if (!root || (!root->left && !root->right)) return 0; int res = 0; queue<TreeNode*> q; q.push(root); while (!q.empty()) { TreeNode *t = q.front(); q.pop(); if (t->left && !t->left->left && !t->left->right) res += t->left->val; if (t->left) q.push(t->left); if (t->right) q.push(t->right); } return res; } };
我们也可以用stack来辅助,对比上面的解法,我们发现几乎一模一样,只是把queue换成了stack,但实际上遍历的顺序不同,这种方法是先序遍历的迭代写法,参见代码如下:
解法四:
class Solution { public: int sumOfLeftLeaves(TreeNode* root) { if (!root || (!root->left && !root->right)) return 0; int res = 0; stack<TreeNode*> s; s.push(root); while (!s.empty()) { TreeNode *t = s.top(); s.pop(); if (t->left && !t->left->left && !t->left->right) res += t->left->val; if (t->left) s.push(t->left); if (t->right) s.push(t->right); } return res; } };
参考资料:
https://discuss.leetcode.com/topic/60467/3-line-c-solution
https://discuss.leetcode.com/topic/60381/java-solution-using-bfs
https://discuss.leetcode.com/topic/60415/java-solution-with-stack
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Find the sum of all left leaves in a given binary tree.
Example:
这道题让我们求一棵二叉树的所有左子叶的和,那么看到这道题我们知道这肯定是考二叉树的遍历问题,那么最简洁的写法肯定是用递归,由于我们只需要累加左子叶之和,那么我们在进入递归函数的时候需要知道当前结点是否是左子节点,如果是左子节点,而且该左子节点再没有子节点了说明其是左子叶,那么我们将其值加入结果res中,我们用一个bool型的变量,如果为true说明当前结点是左子节点,若为false则说明是右子节点,不做特殊处理,整个来说就是个递归的先序遍历的写法,参见代码如下:
解法一:
我们还可以写的更简洁一些,不需要写其他的函数,直接在原函数中检查当前节点的左子节点是否是左子叶,如果是的话,则返回左子叶的值加上对当前结点的右子节点调用递归的结果;如果不是的话,我们对左右子节点分别调用递归函数,返回二者之和,参见代码如下:
解法二:
我们也可以使用迭代来解,因为这道题的本质是遍历二叉树,所以我们可以用层序遍历的迭代写法,利用queue来辅助,注意对左子叶的判断和处理,参见代码如下:
解法三:
我们也可以用stack来辅助,对比上面的解法,我们发现几乎一模一样,只是把queue换成了stack,但实际上遍历的顺序不同,这种方法是先序遍历的迭代写法,参见代码如下:
解法四:
参考资料:
https://discuss.leetcode.com/topic/60467/3-line-c-solution
https://discuss.leetcode.com/topic/60381/java-solution-using-bfs
https://discuss.leetcode.com/topic/60415/java-solution-with-stack
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: