You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0 to 2N-1, the couples are numbered in order, the first couple being (0, 1), the second couple being (2, 3), and so on with the last couple being (2N-2, 2N-1).
The couples' initial seating is given by row[i] being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3]
Output: 1
Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1]
Output: 0
Explanation: All couples are already seated side by side.
Note:
len(row) is even and in the range of [4, 60].
row is guaranteed to be a permutation of 0...len(row)-1.
此时取出最后两个数2和5,其群组号分别为1和2,因为此时都是一个大组内的了,带入 find 函数返回相同的值,不做任何处理。最终交换的步数就是 res 值,为2,参见代码如下:
解法二:
class Solution {
public:
int minSwapsCouples(vector<int>& row) {
int res = 0, n = row.size();
vector<int> root(n, 0);
for (int i = 0; i < n; ++i) root[i] = i;
for (int i = 0; i < n; i += 2) {
int x = find(root, row[i] / 2);
int y = find(root, row[i + 1] / 2);
if (x != y) {
root[x] = y;
++res;
}
}
return res;
}
int find(vector<int>& root, int i) {
return (i == root[i]) ? i : find(root, root[i]);
}
};
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from
0
to2N-1
, the couples are numbered in order, the first couple being(0, 1)
, the second couple being(2, 3)
, and so on with the last couple being(2N-2, 2N-1)
.The couples' initial seating is given by
row[i]
being the value of the person who is initially sitting in the i-th seat.Example 1:
Example 2:
Note:
len(row)
is even and in the range of[4, 60]
.row
is guaranteed to be a permutation of0...len(row)-1
.这道题给了我们一个长度为n的数组,里面包含的数字是 [0, n-1] 范围内的数字各一个,让通过调换任意两个数字的位置,使得相邻的奇偶数靠在一起。因为要两两成对,所以题目限定了输入数组必须是偶数个。要明确的是,组成对儿的两个是从0开始,每两个一对儿的。比如0和1,2和3,像1和2就不行。而且检测的时候也是两个数两个数的检测,左右顺序无所谓,比如2和3,或者3和2都行。当暂时对如何用代码来解决问题没啥头绪的时候,一个很好的办法是,先手动解决问题,意思是,假设这道题不要求你写代码,就让你按照要求排好序怎么做。随便举个例子来说吧,比如:
[3 1 4 0 2 5]
如何将其重新排序呢?首先明确,交换数字位置的动机是要凑对儿,如果交换的两个数字无法组成新对儿,那么这个交换就毫无意义。来手动交换吧,两个两个的来看数字,前两个数是3和1,知道其不成对儿,数字3的老相好是2,不是1,那么怎么办呢?就把1和2交换位置呗。好,那么现在3和2牵手成功,度假去了,再来看后面的:
[3 2 4 0 1 5]
再取两数字,4和0,互不认识!4跟5有一腿儿,不是0,那么就把0和5,交换一下吧,得到:
[3 2 4 5 1 0]
好了,再取最后两个数字,1和0,两口子,不用动!前面都成对的话,最后两个数字一定成对。而且这种方法所用的交换次数一定是最少的,不要问博主怎么证明,博主也不会 |||-.-~ 明眼人应该已经看出来了,这就是一种贪婪算法 Greedy Algorithm。思路有了,代码就很容易写了,注意这里在找老伴儿时用了一个 trick,一个数 ‘异或’ 上1就是其另一个位,这个不难理解,如果是偶数的话,最后位是0,‘异或’上1等于加了1,变成了可以的成对奇数。如果是奇数的话,最后位是1,‘异或’上1后变为了0,变成了可以的成对偶数。参见代码如下:
解法一:
下面来看一种使用联合查找 Union Find 的解法。该解法对于处理群组问题时非常有效,比如岛屿数量有关的题就经常使用 UF 解法。核心思想是用一个 root 数组,每个点开始初始化为不同的值,如果两个点属于相同的组,就将其中一个点的 root 值赋值为另一个点的位置,这样只要是相同组里的两点,通过 find 函数会得到相同的值。 那么如果总共有n个数字,则共有 n/2 对儿,所以初始化 n/2 个群组,还是每次处理两个数字。每个数字除以2就是其群组号,那么属于同一组的两个数的群组号是相同的,比如2和3,其分别除以2均得到1,所以其组号均为1。那么这对解题有啥作用呢?作用忒大了,由于每次取的是两个数,且计算其群组号,并调用 find 函数,那么如果这两个数的群组号相同,那么 find 函数必然会返回同样的值,不用做什么额外动作,因为本身就是一对儿。如果两个数不是一对儿,那么其群组号必然不同,在二者没有归为一组之前,调用 find 函数返回的值就不同,此时将二者归为一组,并且 cnt 自减1,忘说了,cnt 初始化为总群组数,即 n/2。那么最终 cnt 减少的个数就是交换的步数,但是这里为了简便,直接用个 res 变量来统计群组减少的个数,还是用上面讲解中的例子来说明吧:
[3 1 4 0 2 5]
最开始的群组关系是:
群组0:0,1
群组1:2,3
群组2:4,5
取出前两个数字3和1,其群组号分别为1和0,带入 find 函数返回不同值,则此时将群组0和群组1链接起来,变成一个群组,则此时只有两个群组了,res 自增1,变为了1。
群组0 & 1:0,1,2,3
群组2:4,5
此时取出4和0,其群组号分别为2和0,带入 find 函数返回不同值,则此时将群组 0&1 和群组2链接起来,变成一个超大群组,res 自增1,变为了2。
群组0 & 1 & 2:0,1,2,3,4,5
此时取出最后两个数2和5,其群组号分别为1和2,因为此时都是一个大组内的了,带入 find 函数返回相同的值,不做任何处理。最终交换的步数就是 res 值,为2,参见代码如下:
解法二:
下面这种使用 HashMap 的解法,本质其实也是联合查找 Union Find。只有群组里面是数字,才能使用 root 数组,有些非数字的情况,比如字符串,就要使用 HashMap 了,当然数字也是可以使用 HashMap 的。这里的 helper 子函数相当于同时包括了链接群组和 find 查找两部分,在主函数中,还是两个两个处理,并且把群组号带入 helper 函数,在 helper 函数中,将较小数和较大数区分出来,如果二者相同,表明是同一个群组的,不做任何处理,直接返回。否则的话,建立二者的映射,这就是上面解法中的链接群组操作,这样看出来了吧,二者的本质其实是一样的,参见代码如下:
解法三:
这道题的一个 Follow up 就是 fun4LeetCode 大神的帖子 中讨论的N整数问题 N Integers Problems,简单来说就是最少使用几步可以将所有的数字移回其正确位置,比如数组 [0 3 1 2] 变回 [0 1 2 3] 需要几步,两步就够了,先交换3和2,变成 [0 2 1 3],再交换2和1,变回 [0 1 2 3]。怎么做呢?实际上在遍历某一个位置i,如果发现 i != rows[i],就不同的通过交换i和 rows[i],然后让 row[i] 等于 row[row[i]],使其最终相等,是不是也有点 Union Find 的影子在里面呢?真是很有趣呢~面白以~
Github 同步地址:
#765
类似题目:
Missing Number
First Missing Positive
参考资料:
https://leetcode.com/problems/couples-holding-hands/
https://leetcode.com/problems/couples-holding-hands/discuss/113353/Monster-Style-C++-O(n)-unordered_map
https://leetcode.com/problems/couples-holding-hands/discuss/117520/Java-union-find-easy-to-understand-5-ms
https://leetcode.com/problems/couples-holding-hands/discuss/113362/JavaC++-O(N)-solution-using-cyclic-swapping
LeetCode All in One 题目讲解汇总(持续更新中...)
The text was updated successfully, but these errors were encountered: