-
Notifications
You must be signed in to change notification settings - Fork 300
/
Copy pathrasterizer_impl.cu
434 lines (395 loc) · 12.1 KB
/
rasterizer_impl.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/*
* Copyright (C) 2023, Inria
* GRAPHDECO research group, https://team.inria.fr/graphdeco
* All rights reserved.
*
* This software is free for non-commercial, research and evaluation use
* under the terms of the LICENSE.md file.
*
* For inquiries contact george.drettakis@inria.fr
*/
#include "rasterizer_impl.h"
#include <iostream>
#include <fstream>
#include <algorithm>
#include <numeric>
#include <cuda.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <cub/cub.cuh>
#include <cub/device/device_radix_sort.cuh>
#define GLM_FORCE_CUDA
#include <glm/glm.hpp>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg = cooperative_groups;
#include "auxiliary.h"
#include "forward.h"
#include "backward.h"
// Helper function to find the next-highest bit of the MSB
// on the CPU.
uint32_t getHigherMsb(uint32_t n)
{
uint32_t msb = sizeof(n) * 4;
uint32_t step = msb;
while (step > 1)
{
step /= 2;
if (n >> msb)
msb += step;
else
msb -= step;
}
if (n >> msb)
msb++;
return msb;
}
// Wrapper method to call auxiliary coarse frustum containment test.
// Mark all Gaussians that pass it.
__global__ void checkFrustum(int P,
const float* orig_points,
const float* viewmatrix,
const float* projmatrix,
bool* present)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
float3 p_view;
present[idx] = in_frustum(idx, orig_points, viewmatrix, projmatrix, false, p_view);
}
// Generates one key/value pair for all Gaussian / tile overlaps.
// Run once per Gaussian (1:N mapping).
__global__ void duplicateWithKeys(
int P,
const float2* points_xy,
const float* depths,
const uint32_t* offsets,
uint64_t* gaussian_keys_unsorted,
uint32_t* gaussian_values_unsorted,
int* radii,
dim3 grid)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= P)
return;
// Generate no key/value pair for invisible Gaussians
if (radii[idx] > 0)
{
// Find this Gaussian's offset in buffer for writing keys/values.
uint32_t off = (idx == 0) ? 0 : offsets[idx - 1];
uint2 rect_min, rect_max;
getRect(points_xy[idx], radii[idx], rect_min, rect_max, grid);
// For each tile that the bounding rect overlaps, emit a
// key/value pair. The key is | tile ID | depth |,
// and the value is the ID of the Gaussian. Sorting the values
// with this key yields Gaussian IDs in a list, such that they
// are first sorted by tile and then by depth.
for (int y = rect_min.y; y < rect_max.y; y++)
{
for (int x = rect_min.x; x < rect_max.x; x++)
{
uint64_t key = y * grid.x + x;
key <<= 32;
key |= *((uint32_t*)&depths[idx]);
gaussian_keys_unsorted[off] = key;
gaussian_values_unsorted[off] = idx;
off++;
}
}
}
}
// Check keys to see if it is at the start/end of one tile's range in
// the full sorted list. If yes, write start/end of this tile.
// Run once per instanced (duplicated) Gaussian ID.
__global__ void identifyTileRanges(int L, uint64_t* point_list_keys, uint2* ranges)
{
auto idx = cg::this_grid().thread_rank();
if (idx >= L)
return;
// Read tile ID from key. Update start/end of tile range if at limit.
uint64_t key = point_list_keys[idx];
uint32_t currtile = key >> 32;
if (idx == 0)
ranges[currtile].x = 0;
else
{
uint32_t prevtile = point_list_keys[idx - 1] >> 32;
if (currtile != prevtile)
{
ranges[prevtile].y = idx;
ranges[currtile].x = idx;
}
}
if (idx == L - 1)
ranges[currtile].y = L;
}
// Mark Gaussians as visible/invisible, based on view frustum testing
void CudaRasterizer::Rasterizer::markVisible(
int P,
float* means3D,
float* viewmatrix,
float* projmatrix,
bool* present)
{
checkFrustum << <(P + 255) / 256, 256 >> > (
P,
means3D,
viewmatrix, projmatrix,
present);
}
CudaRasterizer::GeometryState CudaRasterizer::GeometryState::fromChunk(char*& chunk, size_t P)
{
GeometryState geom;
obtain(chunk, geom.depths, P, 128);
obtain(chunk, geom.clamped, P * 3, 128);
obtain(chunk, geom.internal_radii, P, 128);
obtain(chunk, geom.means2D, P, 128);
obtain(chunk, geom.cov3D, P * 6, 128);
obtain(chunk, geom.conic_opacity, P, 128);
obtain(chunk, geom.rgb, P * 3, 128);
obtain(chunk, geom.tiles_touched, P, 128);
cub::DeviceScan::InclusiveSum(nullptr, geom.scan_size, geom.tiles_touched, geom.tiles_touched, P);
obtain(chunk, geom.scanning_space, geom.scan_size, 128);
obtain(chunk, geom.point_offsets, P, 128);
return geom;
}
CudaRasterizer::ImageState CudaRasterizer::ImageState::fromChunk(char*& chunk, size_t N)
{
ImageState img;
obtain(chunk, img.accum_alpha, N, 128);
obtain(chunk, img.n_contrib, N, 128);
obtain(chunk, img.ranges, N, 128);
return img;
}
CudaRasterizer::BinningState CudaRasterizer::BinningState::fromChunk(char*& chunk, size_t P)
{
BinningState binning;
obtain(chunk, binning.point_list, P, 128);
obtain(chunk, binning.point_list_unsorted, P, 128);
obtain(chunk, binning.point_list_keys, P, 128);
obtain(chunk, binning.point_list_keys_unsorted, P, 128);
cub::DeviceRadixSort::SortPairs(
nullptr, binning.sorting_size,
binning.point_list_keys_unsorted, binning.point_list_keys,
binning.point_list_unsorted, binning.point_list, P);
obtain(chunk, binning.list_sorting_space, binning.sorting_size, 128);
return binning;
}
// Forward rendering procedure for differentiable rasterization
// of Gaussians.
int CudaRasterizer::Rasterizer::forward(
std::function<char* (size_t)> geometryBuffer,
std::function<char* (size_t)> binningBuffer,
std::function<char* (size_t)> imageBuffer,
const int P, int D, int M,
const float* background,
const int width, int height,
const float* means3D,
const float* shs,
const float* colors_precomp,
const float* opacities,
const float* scales,
const float scale_modifier,
const float* rotations,
const float* cov3D_precomp,
const float* viewmatrix,
const float* projmatrix,
const float* cam_pos,
const float tan_fovx, float tan_fovy,
const bool prefiltered,
float* out_color,
int* radii,
bool debug)
{
const float focal_y = height / (2.0f * tan_fovy);
const float focal_x = width / (2.0f * tan_fovx);
size_t chunk_size = required<GeometryState>(P);
char* chunkptr = geometryBuffer(chunk_size);
GeometryState geomState = GeometryState::fromChunk(chunkptr, P);
if (radii == nullptr)
{
radii = geomState.internal_radii;
}
dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
dim3 block(BLOCK_X, BLOCK_Y, 1);
// Dynamically resize image-based auxiliary buffers during training
size_t img_chunk_size = required<ImageState>(width * height);
char* img_chunkptr = imageBuffer(img_chunk_size);
ImageState imgState = ImageState::fromChunk(img_chunkptr, width * height);
if (NUM_CHANNELS != 3 && colors_precomp == nullptr)
{
throw std::runtime_error("For non-RGB, provide precomputed Gaussian colors!");
}
// Run preprocessing per-Gaussian (transformation, bounding, conversion of SHs to RGB)
CHECK_CUDA(FORWARD::preprocess(
P, D, M,
means3D,
(glm::vec3*)scales,
scale_modifier,
(glm::vec4*)rotations,
opacities,
shs,
geomState.clamped,
cov3D_precomp,
colors_precomp,
viewmatrix, projmatrix,
(glm::vec3*)cam_pos,
width, height,
focal_x, focal_y,
tan_fovx, tan_fovy,
radii,
geomState.means2D,
geomState.depths,
geomState.cov3D,
geomState.rgb,
geomState.conic_opacity,
tile_grid,
geomState.tiles_touched,
prefiltered
), debug)
// Compute prefix sum over full list of touched tile counts by Gaussians
// E.g., [2, 3, 0, 2, 1] -> [2, 5, 5, 7, 8]
CHECK_CUDA(cub::DeviceScan::InclusiveSum(geomState.scanning_space, geomState.scan_size, geomState.tiles_touched, geomState.point_offsets, P), debug)
// Retrieve total number of Gaussian instances to launch and resize aux buffers
int num_rendered;
CHECK_CUDA(cudaMemcpy(&num_rendered, geomState.point_offsets + P - 1, sizeof(int), cudaMemcpyDeviceToHost), debug);
size_t binning_chunk_size = required<BinningState>(num_rendered);
char* binning_chunkptr = binningBuffer(binning_chunk_size);
BinningState binningState = BinningState::fromChunk(binning_chunkptr, num_rendered);
// For each instance to be rendered, produce adequate [ tile | depth ] key
// and corresponding dublicated Gaussian indices to be sorted
duplicateWithKeys << <(P + 255) / 256, 256 >> > (
P,
geomState.means2D,
geomState.depths,
geomState.point_offsets,
binningState.point_list_keys_unsorted,
binningState.point_list_unsorted,
radii,
tile_grid)
CHECK_CUDA(, debug)
int bit = getHigherMsb(tile_grid.x * tile_grid.y);
// Sort complete list of (duplicated) Gaussian indices by keys
CHECK_CUDA(cub::DeviceRadixSort::SortPairs(
binningState.list_sorting_space,
binningState.sorting_size,
binningState.point_list_keys_unsorted, binningState.point_list_keys,
binningState.point_list_unsorted, binningState.point_list,
num_rendered, 0, 32 + bit), debug)
CHECK_CUDA(cudaMemset(imgState.ranges, 0, tile_grid.x * tile_grid.y * sizeof(uint2)), debug);
// Identify start and end of per-tile workloads in sorted list
if (num_rendered > 0)
identifyTileRanges << <(num_rendered + 255) / 256, 256 >> > (
num_rendered,
binningState.point_list_keys,
imgState.ranges);
CHECK_CUDA(, debug)
// Let each tile blend its range of Gaussians independently in parallel
const float* feature_ptr = colors_precomp != nullptr ? colors_precomp : geomState.rgb;
CHECK_CUDA(FORWARD::render(
tile_grid, block,
imgState.ranges,
binningState.point_list,
width, height,
geomState.means2D,
feature_ptr,
geomState.conic_opacity,
imgState.accum_alpha,
imgState.n_contrib,
background,
out_color), debug)
return num_rendered;
}
// Produce necessary gradients for optimization, corresponding
// to forward render pass
void CudaRasterizer::Rasterizer::backward(
const int P, int D, int M, int R,
const float* background,
const int width, int height,
const float* means3D,
const float* shs,
const float* colors_precomp,
const float* scales,
const float scale_modifier,
const float* rotations,
const float* cov3D_precomp,
const float* viewmatrix,
const float* projmatrix,
const float* campos,
const float tan_fovx, float tan_fovy,
const int* radii,
char* geom_buffer,
char* binning_buffer,
char* img_buffer,
const float* dL_dpix,
float* dL_dmean2D,
float* dL_dconic,
float* dL_dopacity,
float* dL_dcolor,
float* dL_dmean3D,
float* dL_dcov3D,
float* dL_dsh,
float* dL_dscale,
float* dL_drot,
bool debug)
{
GeometryState geomState = GeometryState::fromChunk(geom_buffer, P);
BinningState binningState = BinningState::fromChunk(binning_buffer, R);
ImageState imgState = ImageState::fromChunk(img_buffer, width * height);
if (radii == nullptr)
{
radii = geomState.internal_radii;
}
const float focal_y = height / (2.0f * tan_fovy);
const float focal_x = width / (2.0f * tan_fovx);
const dim3 tile_grid((width + BLOCK_X - 1) / BLOCK_X, (height + BLOCK_Y - 1) / BLOCK_Y, 1);
const dim3 block(BLOCK_X, BLOCK_Y, 1);
// Compute loss gradients w.r.t. 2D mean position, conic matrix,
// opacity and RGB of Gaussians from per-pixel loss gradients.
// If we were given precomputed colors and not SHs, use them.
const float* color_ptr = (colors_precomp != nullptr) ? colors_precomp : geomState.rgb;
CHECK_CUDA(BACKWARD::render(
tile_grid,
block,
imgState.ranges,
binningState.point_list,
width, height,
background,
geomState.means2D,
geomState.conic_opacity,
color_ptr,
imgState.accum_alpha,
imgState.n_contrib,
dL_dpix,
(float3*)dL_dmean2D,
(float4*)dL_dconic,
dL_dopacity,
dL_dcolor), debug)
// Take care of the rest of preprocessing. Was the precomputed covariance
// given to us or a scales/rot pair? If precomputed, pass that. If not,
// use the one we computed ourselves.
const float* cov3D_ptr = (cov3D_precomp != nullptr) ? cov3D_precomp : geomState.cov3D;
CHECK_CUDA(BACKWARD::preprocess(P, D, M,
(float3*)means3D,
radii,
shs,
geomState.clamped,
(glm::vec3*)scales,
(glm::vec4*)rotations,
scale_modifier,
cov3D_ptr,
viewmatrix,
projmatrix,
focal_x, focal_y,
tan_fovx, tan_fovy,
(glm::vec3*)campos,
(float3*)dL_dmean2D,
dL_dconic,
(glm::vec3*)dL_dmean3D,
dL_dcolor,
dL_dcov3D,
dL_dsh,
(glm::vec3*)dL_dscale,
(glm::vec4*)dL_drot), debug)
}