-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproduct-of-consecutive-fib-numbers.js
79 lines (55 loc) · 2.27 KB
/
product-of-consecutive-fib-numbers.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/**
* http://www.codewars.com/kata/product-of-consecutive-fib-numbers
*
Description:
The Fibonacci numbers are the numbers in the following integer sequence (Fn):
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
such as
F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
Given a number, say prod (for product), we search two Fibonacci numbers F(n) and F(n+1) verifying
F(n) * F(n+1) = prod.
Your function productFib takes an integer (prod) and returns an array:
[F(n), F(n+1), true] or {F(n), F(n+1), 1} or (F(n), F(n+1), True)
depending on the language if F(n) * F(n+1) = prod.
If you don't find two consecutive F(m) verifying F(m) * F(m+1) = prodyou will return
[F(m), F(m+1), false] or {F(n), F(n+1), 0} or (F(n), F(n+1), False)
F(m) being the smallest one such as F(m) * F(m+1) > prod.
Examples
productFib(714) # should return [21, 34, true],
# since F(8) = 21, F(9) = 34 and 714 = 21 * 34
productFib(800) # should return [34, 55, false],
# since F(8) = 21, F(9) = 34, F(10) = 55 and 21 * 34 < 800 < 34 * 55
Note: Not useful here but we can tell how to choose the number n up to which to go: we can use the
"golden ratio" phi which is (1 + sqrt(5))/2 knowing that F(n) is asymptotic to: phi^n / sqrt(5).
That gives a possible upper bound to n.
*
*/
let tests = require('./lib/framework.js');
let Test = tests.Test, describe = tests.describe, it = tests.it, before = tests.before, after = tests.after;
const fibCache = [1, 1];
function fib(n) {
for (var i = 2; i <= n; i++) {
if (!fibCache[i]) {
fibCache[i] = fibCache[i - 2] + fibCache[i - 1];
}
}
return fibCache[n - 1];
}
function productFib(n) {
let p = 0;
let fibN;
let fibNPlus;
for (let i = 1; i < n && p < n; i++) {
fibN = fib(i);
fibNPlus = fib(i + 1);
p = fibN * fibNPlus;
}
return [fibN, fibNPlus, p === n];
}
Test.assertSimilar(productFib(4895), [55, 89, true])
Test.assertSimilar(productFib(5895), [89, 144, false])
Test.assertSimilar(productFib(74049690), [6765, 10946, true])
Test.assertSimilar(productFib(84049690), [10946, 17711, false])
Test.assertSimilar(productFib(193864606), [10946, 17711, true])
Test.assertSimilar(productFib(447577), [610, 987, false])
Test.assertSimilar(productFib(602070), [610, 987, true])