forked from kensho-technologies/qwikidata
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbasic_json_dump.py
59 lines (46 loc) · 1.69 KB
/
basic_json_dump.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import time
from qwikidata.entity import WikidataItem
from qwikidata.json_dump import WikidataJsonDump
from qwikidata.utils import dump_entities_to_json
P_OCCUPATION = "P106"
Q_POLITICIAN = "Q82955"
def has_occupation_politician(item: WikidataItem, truthy: bool = True) -> bool:
"""Return True if the Wikidata Item has occupation politician."""
if truthy:
claim_group = item.get_truthy_claim_group(P_OCCUPATION)
else:
claim_group = item.get_claim_group(P_OCCUPATION)
occupation_qids = [
claim.mainsnak.datavalue.value["id"]
for claim in claim_group
if claim.mainsnak.snaktype == "value"
]
return Q_POLITICIAN in occupation_qids
# create an instance of WikidataJsonDump
wjd_dump_path = "wikidata-20190401-all.json.bz2"
wjd = WikidataJsonDump(wjd_dump_path)
# create an iterable of WikidataItem representing politicians
politicians = []
t1 = time.time()
for ii, entity_dict in enumerate(wjd):
if entity_dict["type"] == "item":
entity = WikidataItem(entity_dict)
if has_occupation_politician(entity):
politicians.append(entity)
if ii % 1000 == 0:
t2 = time.time()
dt = t2 - t1
print(
"found {} politicians among {} entities [entities/s: {:.2f}]".format(
len(politicians), ii, ii / dt
)
)
if ii > 10000:
break
# write the iterable of WikidataItem to disk as JSON
out_fname = "filtered_entities.json"
dump_entities_to_json(politicians, out_fname)
wjd_filtered = WikidataJsonDump(out_fname)
# load filtered entities and create instances of WikidataItem
for ii, entity_dict in enumerate(wjd_filtered):
item = WikidataItem(entity_dict)