-
Notifications
You must be signed in to change notification settings - Fork 0
/
fig2_plot_protection_sensitisation_vs_concentration.R
executable file
·179 lines (132 loc) · 7.23 KB
/
fig2_plot_protection_sensitisation_vs_concentration.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env Rscript
pacman::p_load(tidyverse)
pacman::p_load(stringi)
pacman::p_load(glue)
source("config.R")
effect_counts_hit <- read_tsv("data/effect_counts_hit.tsv")
d <- effect_counts_hit %>%
group_by(flavor, drug, concentration, category, expected, hit) %>%
summarise(fraction = sum(fraction)/n_repl[1], n = sum(n)/n_repl[1], n_total = sum(n_total)/n_repl[1]) %>%
filter(!expected) %>%
ungroup()
## PROTECTION
dd <- d %>% filter(flavor == "absolute", !expected, hit) %>%
mutate( lc = log(concentration)) %>%
group_by(drug) %>% filter(n()>1) %>%
mutate(drug = as.factor(as.character(drug)))
nrow(dd)
dd %>% pull(drug) %>% unique() %>% length()
# sigmoid function
b <- nls(fraction ~ 1 / (1 + exp( -k* (lc - x0[drug]))), start=list(k=-1, x0= dd %>% group_by(drug) %>% summarise(lc = mean(lc)) %>% pull(lc) ), data=dd)
# baseline: no concentration dependency
b0 <- nls(fraction ~ const[drug], start= list(const = dd %>% group_by(drug) %>% summarise(fraction = mean(fraction)) %>% pull(fraction) ), data=dd)
pv_prot <- anova(b0, b)$`Pr(>F)`[2]
BIC(b0)
BIC(b)
k <- coef(b)[1]
x0 <- tibble(x0 = coef(b)[2:length(coef(b))], drug = levels(dd$drug))
dp <- crossing( drug = unique(dd$drug), concentration = 5*2**seq(-4, 7, 0.1)) %>% mutate( lc = log(concentration))
dp <- dp %>% inner_join(x0) %>% mutate( fraction = 1 / (1 + exp( -k* (lc - x0))) )
d %>% filter(flavor == "absolute", !expected, hit) %>%
semi_join(dp, by = "drug") %>%
ggplot(aes(concentration, fraction)) +
geom_line(data = dp, aes(group = drug), color = COLOR_PROTECTION) +
geom_point(aes(size = n_total), alpha = 0.5) +
scale_y_continuous(name = "Fraction of species protected by the community") +
scale_x_log10(name = "Drug concentration (µM)") +
scale_size_area(name = "Number of species affected in monoculture experiments", max_size = 4) +
facet_wrap(~drug) +
ggtitle(sprintf("Protection in community:\nLogistic function with common growth rate and drug-specific offset\nANOVA p-value compared to constant fraction per drug = %.2g", pv_prot)) +
theme_minimal() +
coord_cartesian(clip = F) +
theme(legend.position = "bottom",
panel.grid.minor = element_blank(),
plot.title = element_text(size = 7),
strip.text = element_text(size = 6),
axis.text = element_text(size = 5),
axis.title = element_text(size = 6),
legend.title = element_text(size = 6),
legend.text = element_text(size = 6),
)
ggsave("suppl_figures/S3A_logistic_function_protection.png", width = 15, height = 12, units = "cm", dpi = 1000, bg = "white")
## SENSITIZATION
dd <- d %>% filter(flavor == "absolute", !expected, !hit) %>%
mutate( lc = log(concentration)) %>%
group_by(drug) %>% filter(n()>1) %>%
mutate(drug = as.factor(as.character(drug)))
nrow(dd)
dd %>% pull(drug) %>% unique() %>% length()
# sigmoid function
b <- nls(fraction ~ 1 / (1 + exp( -k* (lc - x0[drug]))), start=list(k=1, x0= dd %>% group_by(drug) %>% summarise(lc = mean(lc)) %>% pull(lc) ), data=dd)
# baseline: no concentration dependency
b0 <- nls(fraction ~ const[drug], start= list(const = dd %>% group_by(drug) %>% summarise(fraction = mean(fraction)) %>% pull(fraction) ), data=dd)
pv_sens <- anova(b0, b)$`Pr(>F)`[2]
k <- coef(b)[1]
x0 <- tibble(x0 = coef(b)[2:length(coef(b))], drug = levels(dd$drug))
dp <- crossing( drug = unique(dd$drug), concentration = 5*2**seq(-4, 7, 0.1)) %>% mutate( lc = log(concentration))
dp <- dp %>% inner_join(x0) %>% mutate( fraction = 1 / (1 + exp( -k* (lc - x0))) )
d %>% filter(flavor == "absolute", !expected, !hit) %>%
semi_join(dp, by = "drug") %>%
ggplot(aes(concentration, fraction)) +
geom_line(data = dp, aes(group = drug), color = COLOR_SENSITIZATION) +
geom_point(aes(size = n_total), alpha = 0.5) +
# geom_text(data = colon_conc %>% , aes(x = X, y = 1, label = marker), color = "black") +
scale_y_continuous(name = "Fraction of species sensitised by the community") +
scale_x_log10(name = "Drug concentration (µM)") +
scale_size_area(name = "Number of species not affected in monoculture experiments", max_size = 4) +
coord_cartesian(clip=F) +
facet_wrap(~drug) +
ggtitle(sprintf("Sensitization in community:\nLogistic function with common growth rate and drug-specific offset\nANOVA p-value compared to constant fraction per drug = %.2g", pv_sens)) +
theme_minimal() +
theme(legend.position = "bottom",
panel.grid.minor = element_blank(),
plot.title = element_text(size = 7),
strip.text = element_text(size = 6),
axis.text = element_text(size = 5),
axis.title = element_text(size = 6),
legend.title = element_text(size = 6),
legend.text = element_text(size = 6),
)
ggsave("suppl_figures/S3B_logistic_function_sensitization.png", width = 15, height = 12, units = "cm", dpi = 1000, bg = "white")
db <- d %>% filter(flavor == "absolute") %>%
group_by(drug, category) %>%
mutate(i_concentration = factor(conc_names[rank(concentration)], levels = conc_names))
db %>% ungroup() %>% summarise(fraction = round(100*median(fraction)), .by = c(hit, i_concentration)) %>% arrange(hit)
fPV <- function(x, a) {
y <- inner_join( x %>% filter(i_concentration == conc_names[a]), x %>% filter(i_concentration == conc_names[a+1]), by = c("drug") )
tt <- wilcox.test(y$fraction.x, y$fraction.y, paired = T)
print(tt)
tibble(p.value = tt$p.value, category = as.character(x[1,"category"]), x = a+0.5)
}
pvs <- bind_rows(
fPV(db %>% filter(hit), 1),
fPV(db %>% filter(hit), 2),
fPV(db %>% filter(!hit), 1),
fPV(db %>% filter(!hit), 2)
)
plotBoxplot <- function(CATEGORY, TEXT, COLOR) {
ddb <- db %>%
mutate(category = stri_trans_totitle(stri_extract_first_words(category))) %>%
filter(category == CATEGORY)
levels(ddb$i_concentration) <- ddb %>% group_by(i_concentration) %>% summarise(lbl = paste0(as.character(i_concentration[1]), "\n(N=",n(),")")) %>% ungroup() %>% arrange(i_concentration) %>% pull(lbl)
p <- ddb %>%
ggplot(aes(i_concentration, fraction)) +
geom_boxplot(varwidth = T, size = 0.5, outlier.size = 0.5, color = COLOR, linewidth = 0.25) +
geom_text(data = pvs %>% mutate(category = stri_trans_totitle(stri_extract_first_words(category))) %>% filter(category == CATEGORY),
aes(x = x, y = 1, label = paste0("p=", round(p.value, 3))), vjust = 1.5, size = 1.5, color = "black") +
xlab("Drug concentration step") +
scale_y_continuous(name = glue("Percentage of {TEXT}\nspecies per drug"), breaks = c(0, 0.5, 1), label=function(v) paste0(v*100, "%")) +
theme_minimal() +
theme(strip.text = element_text(size = 6),
axis.text = element_text(size = 5),
axis.title = element_text(size = 6),
axis.ticks.length = unit(0, "pt"),
panel.grid.major.x = element_blank(),
legend.position = "none"
)
ggsave(glue("panels/fig2_concentration_boxplot_{CATEGORY}.png"), p, height = 4, width = 3.5, units = "cm", dpi = 1000)
ggsave(glue("panels/fig2_concentration_boxplot_{CATEGORY}.pdf"), p, height = 4, width = 3.5, units = "cm")
ddb %>% group_by(i_concentration) %>% summarise(signif(100*median(fraction), 2), n())
}
plotBoxplot("Protection", "protected", COLOR_PROTECTION)
plotBoxplot("Sensitization", "sensitized", COLOR_SENSITIZATION)