Skip to content

Latest commit

 

History

History
57 lines (35 loc) · 2 KB

README.md

File metadata and controls

57 lines (35 loc) · 2 KB

Errata

In the CVPR'18 paper, Table 3 uses version 0 of the CharadesEgo dataset for evaluation. Updated table for version 1 of the dataset will be added here.

ActorObserverNet code in PyTorch

From: Actor and Observer: Joint Modeling of First and Third-Person Videos, CVPR 2018

Contributor: Gunnar Atli Sigurdsson

  • This code implements a triplet network in PyTorch

The code implements found in:

@inproceedings{sigurdsson2018actor,
author = {Gunnar A. Sigurdsson and Abhinav Gupta and Cordelia Schmid and Ali Farhadi and Karteek Alahari},
title = {Actor and Observer: Joint Modeling of First and Third-Person Videos},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
code = {https://github.com/gsig/actor-observer},
}

Dataset:

The Charades-Ego and Charades datasets are available at http://allenai.org/plato/charades/

Charades-Ego Teaser Video

Technical Overview:

All outputs are stored in the cache-dir. This includes epoch*.txt which is the classification output. All output files can be scored with the official MATLAB evaluation script provided with the Charades / CharadesEgo datasets.

Requirements:

  • Python 2.7
  • PyTorch

Steps to train your own model on CharadesEgo:

  1. Download the CharadesEgo Annotations (allenai.org/plato/charades/)
  2. Download the CharadesEgo RGB frames (allenai.org/plato/charades/)
  3. Duplicate and edit one of the experiment files under exp/ with appropriate parameters. For additional parameters, see opts.py
  4. Run an experiment by calling python exp/rgbnet.py where rgbnet.py is your experiment file
  5. The checkpoints/logfiles/outputs are stored in your specified cache directory.
  6. Build of the code, cite our papers, and say hi to us at CVPR.

Good luck!

Pretrained networks:

Charades submission files are available for multiple baselines at https://github.com/gsig/temporal-fields