-
Notifications
You must be signed in to change notification settings - Fork 1
/
singular_vals_trainer.py
308 lines (271 loc) · 13.5 KB
/
singular_vals_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from collections import defaultdict, OrderedDict
from copy import deepcopy
import pdb
import torch
from torch import nn
import torch.nn.functional as F
from utils import get_mask_fn
class LinearCombiner(nn.Module):
def __init__(self, base_linear, add_weight, device=0):
super().__init__()
self.base_linear = base_linear
self.add_weight = add_weight
self.device = device
self.weight = self.base_linear.weight + self.add_weight
bias = None
if hasattr(self.base_linear, 'bias'):
bias = self.base_linear.bias
self.bias = bias
def forward(self, x):
return F.linear(x, self.weight, self.bias)
class SingularValsTrainer(nn.Module):
def __init__(self, ingredients, merge_config, singular_weights, base_model, device='cpu'):
super(SingularValsTrainer, self).__init__()
self.device = device
self.ingredients = ingredients
self.merge_config = merge_config
singular_weights = []
self.parameter_list = nn.ParameterList()
self.list_of_key2pm_idx = []
for idx, Ss in enumerate(ingredients['task_Ss']):
task_weights = {}
key2pm_idx = {}
for jdx, (key, val) in enumerate(Ss.items()):
task_weights[key] = nn.Parameter(deepcopy(val) * .2, requires_grad=True).to(device)
self.parameter_list.append(task_weights[key])
key2pm_idx[key] = idx * len(Ss) + jdx
singular_weights.append(task_weights)
self.list_of_key2pm_idx.append(key2pm_idx)
self.singular_weights = singular_weights
self.base_model = base_model
self.create_merged_model()
def forward(self, x):
return self.model(x)
def create_merged_model(self):
list_to_device = lambda x: [{key: val.to(self.device) for key, val in elem.items()} for elem in x]
dict_to_device = lambda x: {key: val.to(self.device) for key, val in x.items()}
ingredients = deepcopy(self.ingredients)
ftms_others = self.make_trainable(list_to_device(ingredients['ftms_others']))
ptm_reference_params = self.make_trainable(dict_to_device(ingredients['ptm_reference_params']))
U = self.make_trainable(dict_to_device(ingredients['U']))
task_sVs = self.make_trainable(list_to_device(ingredients['task_sVs']))
task_vnorms = self.make_trainable(list_to_device(ingredients['task_vnorms']))
pre_mask_fns = ingredients['pre_mask_fns']
pre_merge_fns = ingredients['pre_merge_fns']
representations = self.directions_to_reps(task_sVs)
ftms_reps, ptm_rep = self.apply_pre_mask_fns(pre_mask_fns, representations)
mask_fn = get_mask_fn(self.merge_config['mask_method'])
masks = mask_fn(ftms_reps, **self.merge_config)
ftms_reps = torch.vstack(ftms_reps).clone()
masked_sVs = ftms_reps * masks
pre_merge_sVs = self.apply_pre_merge_fns(pre_merge_fns, masked_sVs, masks, ptm_rep)
pre_merge_sVs_dict = self.rep_to_state_dict(pre_merge_sVs, task_sVs[0])
# ------------------------------------- We start here -------------------------------------
pre_merge_sVs = self.apply_Ss_on_Vs(pre_merge_sVs_dict)
rescaled_Vs = self.rescale_Vs(pre_merge_sVs, task_vnorms)
template_sd = {key: val.detach() for key, val in rescaled_Vs[0].items()}
mask_sd = self.mask_to_state_dict([m.cuda() for m in masks], template_sd)
merged_sV_sd = self.weighted_merge(
merging_type=self.merge_config.get('merging_type', 'mean'),
task_Vs=rescaled_Vs,
task_masks=mask_sd
)
merged_sd = self.reconstruct_merged_sd(U, merged_sV_sd)
merged_others = self.merge_others(ftms_others)
merged_sd = self.add_others(merged_sd, merged_others)
# pdb.set_trace()
merged_sd = self.matrix_to_state_dict(merged_sd, ptm_reference_params)
# Add merged sd to the ptm
merged_base = deepcopy(self.base_model).to(self.device).train()
# for parameter in merged_base.parameters():
# parameter.requires_grad = True
merged_model = self.add_trainable_parameters(
merged_base, merged_sd,
concat_across_output=self.merge_config.get('concat_across_output', True)
)
# pdb.set_trace()
self.model = merged_model
# return merged_model
def replace_Linear_with_LinearCombiner(self, model, key, add_weight):
stages = key.split('.')
x = getattr(model, stages[0])
for stage in stages[1:-1]:
if stage in [str(i) for i in range(20)]:
x = x[int(stage)]
continue
x = getattr(x, stage)
# pdb.set_trace()
module = LinearCombiner(getattr(x, stages[-1]), add_weight)
setattr(x, stages[-1], module)
def add_trainable_parameters(self, base_model, parameters, concat_across_output = True, scaling_coeffs=1.):
sd = dict(base_model.named_parameters())
for key, val in parameters.items():
cur_val = deepcopy(sd[key])
try:
if (concat_across_output):
# sd[key] = sd[key] + val * scaling_coeffs
# sd[key].add_(val * scaling_coeffs)
self.replace_Linear_with_LinearCombiner(base_model, key.replace('.weight', ''), val * scaling_coeffs)
else:
# sd[key] = sd[key] + val.T * scaling_coeffs
sd[key].add_(val.T * scaling_coeffs)
except:
pdb.set_trace()
# pdb.set_trace()
# base_model.load_state_dict(sd)
return base_model
def make_trainable(self, d):
return d
# if isinstance(d, list):
# return [self.make_trainable(elem) for elem in d]
# for key, val in d.items():
# d[key].requires_grad = True
# return d
def get_layer_names(self, state_dict):
layer_names = defaultdict(lambda: dict())
for key in state_dict:
if ('.weight' in key) or ('_weight' in key):
strip_key = key.replace('.weight', '').replace('_weight', '')
layer_names[strip_key]['weight'] = key
elif ('.bias' in key) or ('_bias' in key):
strip_key = key.replace('.bias', '').replace('_bias', '')
layer_names[strip_key]['bias'] = key
else:
layer_names[key]['other'] = key + ':other'
return layer_names
def matrix_to_state_dict(self, matrix, state_dict, remove_keys=[]):
if isinstance(matrix, list):
return [self.matrix_to_state_dict(m, state_dict) for m in matrix]
reference_dict = deepcopy(state_dict)
for key in remove_keys:
if key in reference_dict:
del reference_dict[key]
layer_names = self.get_layer_names(reference_dict)
merged_state_dict = {}
# pdb.set_trace()
for layer_name, value in matrix.items():
try:
parameter_types = layer_names[layer_name.replace(':other', '')]
if 'other' in parameter_types:
# pdb.set_trace()
name = parameter_types['other'].replace(':other', '')
merged_state_dict[name] = value.reshape(reference_dict[name].shape)
else:
# weight_name = parameter_types['weight']
if 'bias' in parameter_types:
bias_index = value.shape[1] - 1
value, bias = value[:, :bias_index], value[:, -1].flatten()
merged_state_dict[parameter_types['bias']] = bias
if 'norm' in layer_name or 'ln' in layer_name:
value = torch.diagonal(value)
name = parameter_types['weight']
merged_state_dict[name] = value.reshape(*(reference_dict[name].shape))
except:
pdb.set_trace()
# add back the encoder and decoder embedding weights.
if "transformer.shared.weight" in merged_state_dict:
for key in remove_keys:
merged_state_dict[key] = merged_state_dict[
"transformer.shared.weight"
]
return merged_state_dict
def directions_to_reps(self, directions):
if isinstance(directions, list):
return [self.directions_to_reps(direction) for direction in directions]
return torch.nn.utils.parameters_to_vector(
[value.reshape(-1) for key, value in directions.items()]
)
def rep_to_state_dict(self, vector, state_dict, remove_keys=[]):
# pdb.set_trace()
if isinstance(vector, list) or len(vector.shape) == 2:
# pdb.set_trace()
return [self.rep_to_state_dict(v, state_dict, remove_keys) for v in vector]
# create a reference dict to define the order of the vector
reference_dict = deepcopy(state_dict)
for key in remove_keys:
if key in reference_dict:
del reference_dict[key]
sorted_reference_dict = OrderedDict(sorted(reference_dict.items()))
# create a shared state dict using the refence dict
torch.nn.utils.vector_to_parameters(vector, sorted_reference_dict.values())
# add back the encoder and decoder embedding weights.
if "transformer.shared.weight" in sorted_reference_dict:
for key in remove_keys:
sorted_reference_dict[key] = sorted_reference_dict[
"transformer.shared.weight"
]
return sorted_reference_dict
def apply_pre_mask_fns(self, fns, sds, ptm_sd=None):
for fn in fns:
sds, ptm_sd = fn(sds, ptm_sd)
return sds, ptm_sd
def apply_pre_merge_fns(self, fns, ftms, masks, ptm=None):
for fn in fns:
ftms, masks, ptm = fn(ftms, masks, ptm)
return ftms
def apply_Ss_on_Vs(self, task_Vs):
task_sVs = [dict() for i in range(len(task_Vs))]
for idx, (Vs, key2pm_idx) in enumerate(zip(task_Vs, self.list_of_key2pm_idx)):
for key, V in Vs.items():
pm_idx = key2pm_idx[key]
s = F.relu(self.parameter_list[pm_idx])
task_sVs[idx][key] = torch.diag(s) @ V
return task_sVs
def rescale_Vs(self, task_Vs, task_vnorms):
# pdb.set_trace()
taskv_rescaled = [dict() for _ in range(len(task_Vs))]
for idx, (task_v, task_vnorm) in enumerate(zip(task_Vs, task_vnorms)):
for key in task_v.keys():
if task_vnorm[key] is not None:
taskv_rescaled[idx][key] = task_v[key] * task_vnorm[key]
else:
taskv_rescaled[idx][key] = task_v[key]
return taskv_rescaled
def reconstruct_merged_sd(self, U_sd, sV_sd):
if isinstance(sV_sd, list):
if isinstance(U_sd, list):
return [self.reconstruct_merged_sd(U, sV) for U, sV in zip(U_sd, sV_sd)]
return [self.reconstruct_merged_sd(U_sd, sV) for sV in sV_sd]
sd = {}
for key, U in U_sd.items():
sd[key] = (U @ sV_sd[key]).to(torch.float32) # ensure float32 dtype
return sd
def add_others(self, ftms_mats, ftms_others):
if isinstance(ftms_mats, list):
return [self.add_others(ftms_mat, ftms_other) for ftms_mat, ftms_other in zip(ftms_mats, ftms_others)]
for key, val in ftms_others.items():
ftms_mats[key] = val
return ftms_mats
def merge_others(self, ftms_others, weights=None):
merged_others = {}
for key in ftms_others[0].keys():
pdb.set_trace
if weights is not None:
merged_others[key] = torch.stack([ftm_other[key] * weight.flatten() for ftm_other, weight in zip(ftms_others, weights)], dim=0).sum(dim=0)
else:
merged_others[key] = torch.stack([ftm_other[key] for ftm_other in ftms_others], dim=0).sum(dim=0)
return merged_others
def mask_to_state_dict(self, mask, state_dict, remove_keys=[]):
if isinstance(mask, list):
return [self.mask_to_state_dict(m, state_dict, remove_keys) for m in mask]
return self.rep_to_state_dict(mask, state_dict, remove_keys)
def weighted_merge(self, merging_type, task_Vs, task_masks, weights=None):
merged_Vs = {}
for key in task_Vs[0].keys():
# pdb.set_trace()
stacked_Vs = torch.stack([task_V[key] for task_V in task_Vs], dim=0)
stacked_mask = torch.stack([task_mask[key] for task_mask in task_masks], dim=0)
if weights is not None:
stacked_Vs = stacked_Vs * weights[:, None, None]
if merging_type == "mean":
# pdb.set_trace()
non_zero_counts = (stacked_mask != 0).sum(dim=0).float()
denominator = non_zero_counts.clamp(min=1)
merged_Vs[key] = (stacked_Vs).sum(dim=0) / denominator
elif merging_type == "sum":
merged_Vs[key] = stacked_Vs.sum(dim=0)
elif merging_type == 'max':
merged_Vs[key] = stacked_Vs.max(dim=0).values
else:
raise ValueError(f'Unknown merging type: {merging_type}. Pick from mean, sum, or max')
return merged_Vs