-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_utils.py
152 lines (123 loc) · 4.69 KB
/
main_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# helper functions for training
import os, sys
import shutil
import torch
from torch.nn import init
def reset_learning_rate(optimizer, args):
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
def adjust_learning_rate(optimizer, epoch, args):
# old_lr = optimizer.param_groups[0]['lr']
if args.custom_lr:
# lr = args.lr
# try:
#import ipdb; ipdb.set_trace()
pointer = next(x[0] for x in enumerate(args.lr_switch_epochs) if epoch >= x[1])
lr = args.lrs[pointer]
# except StopIteration:
# pass
else:
lr = args.lr * (args.lr_decay_rate ** (epoch // args.lr_decay_epochs))
lr = max(lr, args.lr_clip)
# logger.log('lr: ' + str(lr))
#reset_learning_rate(optimizer, args)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def init_weights_multi(m, init_type, gain=1.):
classname = m.__class__.__name__
if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
if init_type == 'normal':
init.normal_(m.weight.data, 0.0, gain)
elif init_type == 'xavier':
init.xavier_normal_(m.weight.data, gain=gain)
elif init_type == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_type == 'orthogonal':
init.orthogonal_(m.weight.data, gain=gain)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
elif classname.find('BatchNorm') != -1:
init.normal_(m.weight.data, 1.0, gain)
init.constant_(m.bias.data, 0.0)
# ---------------- Pretty sure the following functions/classes are common ----------------
def save_checkpoint(state, is_best, ckpt_dir, filename='checkpoint.pth.tar'):
torch.save(state, os.path.join(ckpt_dir, filename))
if state['epoch'] % 10 == 1:
shutil.copyfile(
os.path.join(ckpt_dir, filename),
os.path.join(ckpt_dir, 'checkpoint_'+str(state['epoch'])+'.pth.tar'))
if is_best:
shutil.copyfile(
os.path.join(ckpt_dir, filename),
os.path.join(ckpt_dir, 'model_best.pth.tar'))
class Logger(object):
def __init__(self, out_fname):
self.out_fd = open(out_fname, 'w')
def log(self, out_str, end='\n'):
"""
out_str: single object now
"""
self.out_fd.write(str(out_str) + end)
self.out_fd.flush()
print(out_str, end=end, flush=True)
def close(self):
self.out_fd.close()
class MovingAverage(object):
def __init__(self, N):
self.cumsum = [0]
self.moving_avgs = []
self.N = N
self.counter = 1
def update(self, x):
self.cumsum.append(self.cumsum[self.counter - 1] + x)
if self.counter < self.N:
self.moving_avgs.append(self.cumsum[self.counter] / self.counter)
else:
moving_avg = (self.cumsum[self.counter] - self.cumsum[self.counter - self.N]) / self.N
self.moving_avgs.append(moving_avg)
self.counter += 1
return self.moving_avgs[-1]
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def query_yes_no(question, default="yes"):
"""Ask a yes/no question via input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
"""
valid = {"yes": True, "y": True, "ye": True,
"no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")