-
Notifications
You must be signed in to change notification settings - Fork 2
/
poster_landscape.tex
447 lines (405 loc) · 17.1 KB
/
poster_landscape.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
\documentclass[landscape,a0paper,fontscale=0.292]{baposter}
\usepackage[vlined]{algorithm2e}
\usepackage{times}
\usepackage{calc}
\usepackage{url}
\usepackage{graphicx}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{relsize}
\usepackage{multirow}
\usepackage{booktabs}
\usepackage{graphicx}
\usepackage{multicol}
\usepackage[T1]{fontenc}
\usepackage{ae}
\usepackage{enumitem}
\setlist[itemize]{nosep}
\usepackage{colortbl}
\usepackage{xcolor}
\usepackage{setspace}
%\usepackage{gensymb} % for \degree
\graphicspath{{images/}}
\setlist[itemize]{leftmargin=*,nosep}
\setlength{\columnsep}{0.7em}
\setlength{\columnseprule}{0mm}
\setlist[enumerate]{leftmargin=2.5em,nosep}
\setlength{\columnsep}{1.0em}
\setlength{\columnseprule}{0mm}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Save space in lists. Use this after the opening of the list
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \newcommand{\compresslist}{%
% \setlength{\itemsep}{0pt}%
% \setlength{\itemsep}{0pt}%
% \setlength{\parskip}{0pt}%
% \setlength{\parsep}{0pt}%
% }
\renewcommand{\rmdefault}{ptm} % Arial
\renewcommand{\sfdefault}{ptm} % Arial
\definecolor{purpleheart}{rgb}{0.41, 0.21, 0.61}
\definecolor{purple(html/css)}{rgb}{0.5, 0.0, 0.5}
\newcommand{\headercolor}{white}
\newcommand{\subheadercolor}{black}
%% Network names
\newcommand{\RefineStage}{RefineNet\xspace}
\newcommand{\CoarseStage}{CoarseNet\xspace}
\newcommand{\CoarseStagenospace}{CoarseNet}
\newcommand{\Weightnetwork}{Weight network\xspace}
\newcommand{\weightnetwork}{weight network\xspace}
\newcommand{\Flownetwork}{Flow network\xspace}
\newcommand{\flownetwork}{flow network\xspace}
\newcommand{\featurealignmodule}{deformable alignment module\xspace}
\newcommand{\featurefusionmodule}{temporal attention fusion module\xspace}
\newcommand{\expolowthr}{0.15}
\newcommand{\expohighthr}{0.9}
\newcommand{\SingleStageRefineStage}{RefineNet$^\dag$\xspace}
%% Exposure description
\newcommand{\twoexposure}{two-exposure\xspace}
\newcommand{\threeexposure}{three-exposure\xspace}
\newcommand{\ntwoExposure}{2-Exposure\xspace}
\newcommand{\nthreeExposure}{3-Exposure\xspace}
\newcommand{\lowexposure}{low-exposure\xspace}
\newcommand{\middleexposure}{middle-exposure\xspace}
\newcommand{\highexposure}{high-exposure\xspace}
\newcommand{\LowExposure}{Low-Exposure\xspace}
\newcommand{\MiddleExposure}{Middle-Exposure\xspace}
\newcommand{\HighExposure}{High-Exposure\xspace}
\newcommand{\AllExposure}{All-Exposure\xspace}
\newcommand{\lineardomain}{linear radiance domain\xspace}
% Metrics
\newcommand{\PSNRL}{PSNR-L\xspace}
\newcommand{\PSNRT}{PSNR\xspace}
\newcommand{\SSIMT}{SSIM-T\xspace}
\newcommand{\VQM}{HDR-VQM\xspace}
\newcommand{\VDP}{HDR-VDP2\xspace}
% Mathematical variables
\newcommand{\crf}{\mathcal{F}}
\newcommand{\hdr}{H}
\newcommand{\tmhdr}{T}
\newcommand{\gttmhdr}{\tilde{\tmhdr}}
\newcommand{\ldr}{L}
\newcommand{\lhdr}{I}
\newcommand{\originldr}{\tilde{\ldr}}
%\newcommand{\hdrtoldr}{l}
\newcommand{\ldrtohdr}{h}
\newcommand{\hdrtoldr}{g}
\newcommand{\expt}{t}
\newcommand{\flow}{F}
\newcommand{\warpldr}{\hat{L}}
\newcommand{\warplhdr}{\hat{I}}
\newcommand{\weight}{\omega}
\newcommand{\coarsehdr}{\hdr^c}
\newcommand{\coarsetmhdr}{\tmhdr^c}
\newcommand{\coarseloss}{\mathcal{L}^\text{c}}
\newcommand{\refinehdr}{\hdr^r}
\newcommand{\refinetmhdr}{\tmhdr^r}
\newcommand{\finalhdr}{\hdr}
\newcommand{\finaltmhdr}{\tmhdr}
\newcommand{\refineloss}{\mathcal{L}^r}
\newcommand{\totalloss}{\mathcal{L}}
\newcommand{\validmask}{M}
\newcommand{\feature}{F}
\newcommand{\alignedfeature}{\tilde{F}}
% Datasets
\newcommand{\staticdatalong}{\emph{static scenes with GT}\xspace}
\newcommand{\staticdataWithMotion}{\emph{static scenes} augmented with random global motion\xspace}
\newcommand{\dynamicgtdatalong}{\emph{dynamic scenes with GT}\xspace}
\newcommand{\dynamicdatalong}{\emph{dynamic scenes without GT}\xspace}
\newcommand{\staticdata}{$\mathcal{D}_s^{gt}$\xspace}
\newcommand{\dynamicgtdata}{$\mathcal{D}_d^{gt}$\xspace}
\newcommand{\dynamicdata}{$\mathcal{D}_d$\xspace}
\newcommand{\kalantaridata}{\emph{Kalantari13} dataset\xspace}
\newcommand{\traindataHDR}{$D_\text{HDR}$\xspace}
\newcommand{\traindataVimeo}{$D_\text{Vimeo}$\xspace}
\newcommand{\NumOfStaticTwoExp}{49}
\newcommand{\NumOfStaticThreeExp}{48}
\newcommand{\NumOfDynamicGTTwoExp}{76}
\newcommand{\NumOfDynamicGTThreeExp}{108}
\newcommand{\NumOfDynamicTwoExp}{37}
\newcommand{\NumOfDynamicThreeExp}{38}
\newcommand{\pokerscene}{\scene{Poker Fullshot}}
\newcommand{\carouselscene}{\scene{Carousel Fireworks}}
\newcommand{\ThrowTowelScene}{\scene{Throwing Towel 2Exp}}
\newcommand{\NinjaScene}{\scene{Ninja 2Exp}}
\newcommand{\FireScene}{\scene{Fire 2Exp}}
\newcommand{\CleaningScene}{\scene{Cleanining 3Exp}}
\newcommand{\DogScene}{\scene{Dog 3Exp}}
\newcommand{\EmailScene}{\scene{Checking Email 3Exp}}
% Methods
\newcommand{\YanCVPR}{Yan19~\cite{yan2019attention}\xspace}
\newcommand{\KalantariTOG}{Kalantari13~\cite{kalantari2013patch}\xspace}
\newcommand{\KalantariEG}{Kalantari19~\cite{kalantari2019deep}\xspace}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Begin of Document
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Here starts the poster
%%---------------------------------------------------------------------------
%% Format it to your taste with the options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{poster}{
% Show grid to help with alignment
grid=false,
columns=5,
% Column spacing
colspacing=0.7em,
% Color style
headerColorOne=purple(html/css),
borderColor=purple(html/css),
%headerColorOne=purpleheart,
%borderColor=purpleheart,
%headerColorOne=cyan!20!white!90!black,
%borderColor=cyan!30!white!90!black,
% Format of textbox
textborder=faded,
% Format of text header
headerborder=open,
headershape=roundedright,
headershade=plain,
background=none,
bgColorOne=cyan!10!white,
headerheight=0.12\textheight
}
% Eye Catcher
{
\includegraphics[height=0.045\linewidth]{logo/HKU_logo}
\makebox[0.005\textwidth]{}
\raisebox{0.00\height}{\includegraphics[height=0.045\linewidth]{logo/alibaba.png}}
\makebox[0.005\textwidth]{}
\raisebox{0.00\height}{\includegraphics[height=0.045\linewidth]{logo/PolyU.svg.png}}
}
% Title
{
\sc\Large\bf HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset
}
% Authors
{
{\large Guanying Chen$^{1,2}$ \quad Chaofeng Chen$^{1}$ \quad Shi Guo$^{2,3}$ \quad Zhetong Liang$^{2,3}$ \quad Kwan-Yee K. Wong$^1$ \quad Lei Zhang$^{2,3}$} \\
{{\normalsize $^1$Department of Computer Science, The University of Hong Kong} \quad
{\normalsize $^2$DAMO Academy, Alibaba Group} \quad \\
{\normalsize $^3$Department of Computing, The Hong Kong Polytechnic University}}
}
% University logo
{
\begin{tabular}{c}
\raisebox{-1.0\height}{\includegraphics[width=0.15\linewidth]{logo/ICCV21_logo.png}}\\
\raisebox{-0.7\height}{\includegraphics[width=0.15\linewidth]{images/qrcode.pdf}}
\end{tabular}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Now define the boxes that make up the poster
%%%---------------------------------------------------------------------------
%%% Each box has a name and can be placed absolutely or relatively.
%%% The only inconvenience is that you can only specify a relative position
%%% towards an already declared box. So if you have a box attached to the
%%% bottom, one to the top and a third one which should be inbetween, you
%%% have to specify the top and bottom boxes before you specify the middle
%%% box.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\headerbox{\bf\color{\headercolor} Problem and Contribution}{name=contribution,column=0,row=0,span=2}{
\begin{minipage}[c]{0.48\linewidth}
\textbf{\color{\subheadercolor}Goal:} Introducing a coarse-to-fine framework and a real-world video dataset for HDR video reconstruction from sequences with alternating exposures.
\end{minipage}
\hfill
\begin{minipage}[c]{0.48\linewidth}
\begin{center}
\includegraphics[width=\textwidth]{images/teaser-crop}
\end{center}
\end{minipage}
\textbf{\color{\subheadercolor}Contributions:}
\begin{itemize}
\item We propose a two-stage framework, which first performs image alignment and HDR fusion in the image space and then in feature space, for HDR video reconstruction from sequences with alternating exposures.
\item We create a real-world video dataset captured with alternating exposures as a benchmark to enable quantitative evaluation for this problem.
\end{itemize}
}
\headerbox{\bf\color{\headercolor} The Proposed Coarse-to-fine Network}{name=abstract,column=0,below=contribution,span=2}{
\textbf{\color{\subheadercolor}Input Preprocessing}
\begin{itemize}
\item {\scriptsize We replace the CRF of the input images with a fixed gamma curve as $\ldr_i = (\crf^{-1} (\originldr_i))^{1/\gamma}$, where $\gamma=2.2$} \vspace{-0.2em}
\item {\scriptsize Global alignment is then performed using a similarity transformation to compensate camera motions among neighboring frames}
\end{itemize}
\vspace{0.2em}
\textbf{\color{\subheadercolor}Network Architecture for Two Alternating Exposures:}
\vspace{-0.5em}
\begin{center}
\includegraphics[width=0.95\textwidth]{images/network-crop.pdf}
\end{center}
\vspace{-0.7em}
\textbf{\color{\subheadercolor}CoarseNet Performs Alignment and Fusion in Image Space:}
\begin{itemize}
\item {\scriptsize CoarseNet warps neighboring frames to the center frame using optical flows, and reconstructs the HDR image by pixel blending}
\end{itemize}
\vspace{0.2em}
\begin{minipage}[c]{0.48\linewidth}
\begin{center}
\includegraphics[width=\textwidth]{images/coarsenet-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[c]{0.48\linewidth}
\vspace{0.2em}
\textbf{\footnotesize Coarse HDR Reconstruction:}
\begin{equation}
\tiny
\label{eq:weighted_sum}
\coarsehdr_i = \frac{\weight_1 \lhdr_{i-1} + \weight_2 \warplhdr_{i-1,i} + \weight_3 \lhdr_i + \weight_4 \warplhdr_{i+1,i} + \weight_5 \lhdr_{i+1}}{\sum_{k=1}^5 \weight_k}.
\end{equation}
\textbf{\footnotesize Loss Function ($L_1$ loss):}
\begin{equation}
\label{eq:mutonemap}
\tiny
\coarseloss = \parallel \coarsetmhdr_i - \gttmhdr_i \parallel_1, \quad \coarsetmhdr_i = \frac{\log(1+\mu \coarsehdr_i)}{\log(1+\mu)}
\end{equation}
\end{minipage}
\vspace{0.5em}
\textbf{\color{\subheadercolor}RefineNet Performs Alignment and Fusion in Feature Space:}
%\vspace{0.2em}
\begin{itemize}
\item {\scriptsize Features of neighboring frames are aligned to the center frame using deformable alignment module} \vspace{-0.2em}
\item {\scriptsize The aligned feature is fused with a temporal attention for HDR reconstruction}
\end{itemize}
\vspace{0.5em}
\begin{minipage}[c]{0.48\linewidth}
\begin{center}
\includegraphics[width=0.9\textwidth]{images/deformable_fusion_module-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[c]{0.48\linewidth}
\textbf{\footnotesize Refined HDR Reconstruction:}
\begin{minipage}[c]{0.48\linewidth}
\begin{equation}
\label{eq:hdr_merge}
\tiny
\finalhdr_i = \validmask_i \odot \coarsehdr_i + (1 - \validmask_i) \odot \refinehdr_i
\end{equation}
\end{minipage}
\hfill
\begin{minipage}[c]{0.48\linewidth}
\vspace{1em}
\begin{center}
\includegraphics[width=\textwidth]{images/blend_curve-crop.jpg}
\end{center}
\end{minipage}
\vspace{1.0em}
\textbf{\footnotesize Loss function ($L_1$ and perceptual loss):}
\begin{equation}
\tiny
\refineloss = \, \frac{\parallel \finaltmhdr_i - \gttmhdr_i \parallel_1}{\parallel 1 - \validmask_i \parallel_1} + \sum\nolimits_k \parallel \phi_k(\tmhdr_i) - \phi_k(\gttmhdr_i) \parallel_1
\end{equation}
\end{minipage}
}
%
\headerbox{\bf\color{\headercolor} The Introduced Real-world Video Dataset}{name=dataset,column=2,row=0,span=3}{
\begin{minipage}[t]{0.44\linewidth}
\textbf{\color{\subheadercolor}Dataset Statistics}
\vspace{-0.5em}
\begin{center}
\includegraphics[width=0.9\textwidth]{images/real_data_stats-crop.pdf}
\end{center}
\vspace{-1em}
\textbf{\color{\subheadercolor}Samples in Static Scenes With GT}
\vspace{-0.6em}
\begin{center}
\includegraphics[width=0.78\textwidth]{images/static_samples-crop.pdf}
\end{center}
\vspace{-1em}
\textbf{\color{\subheadercolor}Samples in Dynamic Scenes Without GT}
\vspace{-0.7em}
\begin{center}
\includegraphics[width=0.78\textwidth]{images/dynamic_nogt_samples-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.54\linewidth}
\textbf{\color{\subheadercolor}Generating the LDRs-HDR Pairs for Dynamic Scenes with GT}
{\scriptsize Row 1: the selected image sequence.\\[-0.5em]
Rows 2 and 3: two sample pairs with low-exposure and high-exposure reference frames, respectively.}
\vspace{-0.7em}
\begin{center}
\includegraphics[width=0.77\textwidth]{images/dynamic_gt_preparation-crop.pdf}
\end{center}
\vspace{-0.7em}
\begin{enumerate}
\scriptsize
\item The subject is asked to keep still for 2s, an HDR image is generated for this static frame
\item The subject is asked to move back-and-forth (e.g., waving hands or walking)
\item Select a sequence whose center frame was the static frame, and arrange it to be proper pairs
\end{enumerate}
\end{minipage}
}
\headerbox{\bf\color{\headercolor} Experiments \& Results}{name=results,column=2,below=dataset,span=3}{
\begin{minipage}[t]{0.30\linewidth}
\textbf{\color{\subheadercolor}Quantitative Results on Synthetic Data}
%\vspace{-0.8em}
\begin{center}
\includegraphics[width=\textwidth]{images/res_quant_syn-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.30\linewidth}
\textbf{\color{\subheadercolor}Qualitative Results on Synthetic Data}
\vspace{-0.8em}
\begin{center}
\includegraphics[width=\textwidth]{images/res_qual_syn-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.32\linewidth}
\textbf{\color{\subheadercolor}Qualitative Results on Real Static Data}
\vspace{-0.8em}
\begin{center}
\includegraphics[width=0.97\textwidth]{images/res_qual_real_static-crop.pdf}
\end{center}
\end{minipage}
\vspace{0.2em}
\begin{minipage}[c]{0.65\linewidth}
\textbf{\color{\subheadercolor}Quantitative Results on the Introduced Real-world Dataset}
\vspace{-0.8em}
\begin{center}
\includegraphics[width=\textwidth]{images/res_quant_real-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[c]{0.34\linewidth}
\textbf{\color{\subheadercolor}Qualitative Results on Real Dynamic Data}
\begin{center}
\includegraphics[width=\textwidth]{images/res_qual_real_dynamic-crop.pdf}
\end{center}
\end{minipage}
\vspace{0.3em}
\begin{minipage}[t]{0.65\linewidth}
\textbf{\color{\subheadercolor}Visual Comparison on THROWING TOWEL Scene from Kalantari13 Dataset}
\vspace{-0.8em}
\begin{center}
\includegraphics[width=\textwidth]{images/res_qual_TOG13-crop.pdf}
\end{center}
\end{minipage}
\hfill
\begin{minipage}[t]{0.34\linewidth}
\textbf{\color{\subheadercolor}Model Parameter and Runtime:}
\vspace{-0.4em}
\begin{center}
\includegraphics[width=\textwidth]{images/runtime-crop.pdf}
\end{center}
\vspace{-0.5em}
\textbf{\color{\subheadercolor}Ablation Study:}
\vspace{-0.5em}
\begin{center}
\includegraphics[width=\textwidth]{images/ablation_study-crop.pdf}
\end{center}
\vspace{-0.5em}
\textbf{\color{\headercolor}References:}
\begin{enumerate}[leftmargin=*,label={[\arabic*]}]
\tiny
\item Kalantari13: Patch-based high dynamic range video, TOG 2013
\item Yan19: Attention- guided network for ghost-free high dynamic range imaging, CVPR 2019
\item Kalantari19: Deep HDR video from sequences with alternating exposures. Computer Graphics Forum, 2019
\end{enumerate}
\end{minipage}
}
\end{poster}
\end{document}