Skip to content

Latest commit

 

History

History
35 lines (24 loc) · 730 Bytes

README.md

File metadata and controls

35 lines (24 loc) · 730 Bytes

CODE-of-LDLSpecificFeatures

Introduction

Label distribution learning (LDL) can be viewed as the generalization of multi-label learning. This novel paradigm focuses on the relative importance of different labels to a particular instance.

Publication

Code accompanying the paper Label Distribution Learning with Label-Specific Features. IJCAI 2019. https://doi.org/10.24963/ijcai.2019/460

DataSet

Emotion6:

http://chenlab.ece.cornell.edu/people/kuanchuan/index.html

Flickr_LDL,Twitter_LDL:

http://cv.nankai.edu.cn/projects/VSA/VSA.html

https://github.com/sherleens/EmotionDistributionLearning

How to use

run LSDemo.m

Environment

Ubuntu 18.04

Matlab R2018a

Intel® Core™ i5-6500 CPU @ 3.20GHz × 4